Japan Geoscience Union Meeting 2012

(May 20-25 2012 at Makuhari, Chiba, Japan)

©2012. Japan Geoscience Union. All Rights Reserved.

SIT41-P20

Room:Convention Hall

Time:May 20 17:15-18:30

Sound velocity measurements of liquid Fe-S at high pressure: Implications for the Earth's and lunar cores

NISHIDA, Keisuke^{1*}, KONO, Yoshio², TERASAKI, Hidenori³, TAKAHASHI, Suguru¹, ISHII, Miho¹, SHIMOYAMA, Yuta¹, HIGO, Yuji⁴, Ken-ichi Funakoshi⁴, IRIFUNE, Tetsuo⁵, OHTANI, Eiji¹

¹Tohoku University, ²HPCAT, ³Osaka University, ⁴JASRI, SPring-8, ⁵GRC, Ehime University

The sound velocity of liquid Fe-S is an important physical property to understand the Earth's and lunar outer cores. We measured P-wave velocity (V_P) of liquid Fe₈₄S₁₆, Fe₆₀S₄₀, and Fe₅₀S₅₀ up to 5.4 GPa and 1550 °C using ultrasonic method combined with synchrotron X-ray technique. The derived VP of liquid Fe-S shows very little change with temperature. The V_P of liquid Fe-S decreases linearly with increasing S content at 2.5 GPa and 1300 °C. The V_P of liquid Fe₆₀S₄₀ increases almost linearly. The expected V_P of the lunar outer core range 3840-4250 m/s assuming the lunar core consists of liquid Fe-FeS outer core and solid Fe inner core. Although the V_P of liquid Fe₆₀S₄₀ is slower than that of pure liquid Fe up to 5.4 GPa, the V_P of liquid Fe₆₀S₄₀ should be exceed that of liquid Fe over 7 GPa because the pressure derivative of V_P of liquid Fe₆₀S₄₀ is larger than that of liquid Fe. This result suggests S is effective in increasing the V_P of liquid Fe over 7 GPa. Therefore, S is considered to be a possible light element of the Earth's outer core.

Keywords: high pressure, sound velocity, core, liquid, Fe-S