Japan Geoscience Union Meeting 2012

(May 20-25 2012 at Makuhari, Chiba, Japan)

©2012. Japan Geoscience Union. All Rights Reserved.

SMP47-01

会場:301A

時間:5月24日09:00-09:15

High-Pressure Phase Transitions in AlPO₄ from First-Principles High-Pressure Phase Transitions in AlPO₄ from First-Principles

Riping Wang^{1*}, Masami Kanzaki¹ WANG, Riping^{1*}, KANZAKI, Masami¹

¹ISEI, Okayama University ¹ISEI, Okayama University

Based on first-principles density functional theory calculations, we predicted a ferroelastic transition in AlPO₄ between stishovite-like and m-CaCl₂ phases by confirming the energetic stability of stishovite-like phase and witnessing a pressure-induced phenomena of symmetry-breaking spontaneous strain, and furthermore, we established a new pressure-induced phase transition sequence for AlPO₄ up to 100 GPa at 0 K as follow: berlinite to moganite, to AlVO₄, to P2₁/c, to CrVO₄, to stishovite-like, and to m-CaCl₂ phase, with the corresponding transition pressure 4.1, 5.0, 7.0, 7.3, 31.9 and 46.4 GPa, respectively. For all these phases, equation of state parameters are reported. This transition sequence largely revises the previous one based on in-situ cold-compression experiments, by incorporating four new phases, moganite, AlVO₄, the P2₁/c, and stishovite-like, the former three of which were synthesized by our recent quench experiments and are theoretically investigated here for the first time. This newly-established phase transition sequence would serve as a model case because it is the most detailed one among all the berlinite-type ABO₄ compounds to date. This study would also provide deep insight into the polymorphism behavior of SiO₂ because of some instructive dissimilarities discerned between these two isoelectronic compounds, such as that all the mixed-coordinated phases in AlPO₄ exceptionally lack counterparts in SiO₂, and that moganite is stable after quartz phase in AlPO₄ but metastable in SiO₂.

 $\neq - \nabla - F$: AlPO₄, SiO₂, phase transitions, high-pressure, first-principles, equation of state Keywords: AlPO₄, SiO₂, phase transitions, high-pressure, first-principles, equation of state