Japan Geoscience Union Meeting 2012

(May 20-25 2012 at Makuhari, Chiba, Japan)

©2012. Japan Geoscience Union. All Rights Reserved.

SMP47-P06

Room:Convention Hall

Time:May 24 13:45-15:15

Transformation mechanism of the sodalite-to-cancrinite phase transformation in oxalatebearing solution

ECHIGO, Takuya^{1*}, Hirohisa Yamada¹, Tamura Kenji¹, Tohru Suzuki²

¹Functional Geomaterials Group, National Institute for Materials Science, ²Advanced Ceramics Group, National Institute for Materials Science

Cancrnite, $Ca_6Ca_2(AlSiO_4)_6(CO_3)_2(H_2O)_2]$, is one of feldspathoid minerals occrring in alkaline rocks. The crystal structure of cancrinite consists of three-dimensional aluminosilicate framework in which various cations (e.g., Na⁺, K⁺, Ca²⁺) and anions (e.g., CO_3^{2-} , Cl^- , OH^- , SO_4^{2-} , NO_3^- , $C_2O_4^{2-}$) are occluded. Recently, Chukanov et al. (2010) reported a new cancrinite group mineral, kyanoxalite [Na₇(AlSiO₄)₆(C₂O₄)_{0.5-1.0}(H₂O)₅], from the Khibiny?Lovozero Alkaline Complex,Kola Peninsula, Russia. The authors mentioned that kyanoxalite was formed by hydrothemal alternation of sodalite [Na₄(AlSiO₄)₃Cl], however, experimetanl evidence of the transformation of sodalite into cancrinite was not provided. In this study, we synthesis oxalate-bearing cancrinite and discuss the fomation mechanism.

Keywords: Cancrinite, Sodalite, Oxalate