Investigation of compressional mechanism of hydrous magnesium silicate by first-principles calculations

YAMAMOTO, Tomoyuki

Faculty of Science and Engineering, Waseda university

It is widely accepted that the atmosphere and the oceans of the Earth are formed by degassing of the Earth’s mantle. Most of the water may have been lost or it may still be stored in the Earth’s mantle. If considerable amounts of water are present in the Earth’s mantle, such water plays a key role in the geodynamics of the Earth’s interior, because it affects the melting temperature and the transport properties of minerals as well as their elastic properties. Recent high pressure experiments suggested that main components of the transition zone of the mantle, wadsleyite and ringwoodite, can store significant amount of water [1-4], and the lower mantle minerals, consisting of Mg-perovskite, magnesiowustite and Ca-perovskite, can potentially store considerable amounts of water [5]. More recently, the substitution mechanism of protons in wadsleyite was studied experimentally by using neutron diffraction technique [6] and theoretically by the first-principles calculations [7] within the density functional theory (DFT) [8]. However the effects of water solution on their physical properties have not yet been fully understood. Then the first principles DFT calculations are performed here to investigate change in compression mechanism of hydrous Mg$_2$SiO$_4$, MgSiO$_3$ and MgO, and influence of proton incorporation on the phase transitions between three polymorphs of Mg$_2$SiO$_4$, i.e. forsterite, wadsleyite and ringwoodite, and partitioning of Mg$_2$SiO$_4$ into MgSiO$_3$ and MgO. Calculated bulk moduli of hydrous Mg$_2$SiO$_4$ have become significantly lower than that of water-free one, in which the calculated result of ringwoodite supports the high pressure experiment [9]. Calculated bulk moduli of hydrous Mg-perovskite and periclase are also much lower (-10\%) than that of anhydrous one. Our free energy calculations suggest that partitioning pressure from hydrous ringwoodite to perovskite and hydrous periclase become significantly larger than that for anhydrous case. If water remains considerable amounts of water in the lower mantle, there has still been possibility that 660 km seismic discontinuity is derived from the partitioning between hydrous minerals.

References

Keywords: first principles calculation, magnesium silicate, phase transition, elastic modulus, bulk modulus