Changes in lattice parameters of filled ice Ih structure of methane hydrate under high pressure

TANAKA, Takehiko1*, HIRAI, Hisako1, YAGI, Takehiko2, OHISHI Yasuo3, MATSUOKA Takehiro4, YAMAMOTO Yoshitaka5, OHTAKE Michika5

1Geodynamics Research Center, Ehime University, 2The Institute for Solid State Physics, Tokyo University, 3Japan Synchrotron Radiation Research Institute, 4Center for Quantum Science and Technology under Extreme Conditions, Osaka University, 5The National Institute of Advanced Industrial Science and Technology

In our previous Raman study, orientaional ordering of guest methane molecules in a filled ice Ih structure of methane hydrate was observed above 15 to 20GPa. Also, Sasaki's group reported clear change in lattice vibration mode of the structure at around 15GPa by Raman spectroscopy, showing a certain change in state of the structure. However, change in a fundamental structure has not yet been observed at the pressure range by X ray diffractometry. In this study, the lattice parameters of the filled ice Ih structure were carefully measured at room temperature up to 40GPa. The results showed that axes ratios changed at around 15 GPa, although the fundamental structure was maintained. The similar changes in the axes ratios were observed at low temperatures and also for denudated-water methane hydrate. The relationship of the axes-ratio change to the orientational ordering of methane molecules in the filled ice Ih structure was discussed.

Keywords: Methane Hydrate, X ray diffraction, high pressure, Raman spectroscopy