The influence of the daily variation of the detection capability on the completeness magnitude

IWATA, Takaki

The Institute of Statistical Mathematics

Evaluating the detection capability of earthquakes in an earthquake catalogue is the first step of statistical seismicity analysis. Conventionally the completeness magnitude M_c, the minimum magnitude of complete recording, is estimated for a catalogue ranging over several weeks, months or years [e.g., Wiemer and Wyss, 2000, BSSA]. It is well known, however, that the detection capability of earthquakes is lower in daytime than in nighttime because of human activity [e.g., Rydelek and Sacks, 1989, BSSA; Atef et al. 2009, BSSA]. Hence an estimated M_c for a catalogue ranging over more than one day would be smaller than M_c in daytime. Therefore, a quantitative analysis of daily variation of detection capability is necessary to discuss the completeness of an earthquake catalogue.

In this study, we used a statistical model representing a magnitude-frequency distribution of all observed earthquakes [e.g., Ringdal, 1975, BSSA; Ogata and Katsura 1993, GJI]. The distribution was assumed to be the product of the Gutenberg-Richter (GR) law and a detection rate function $q(M)$. Following the previous studies, the cumulative distribution of the normal function was used as $q(M)$. Hence, $q(M)$ has two parameters m and s. In the evaluation of the detection capability, the parameter m is fundamental, and it indicates the magnitude where the detection rate of earthquake is 50%. By combination of and m and s, we can compute the magnitude where the detection rate is equal to a particular probability.

Data used in this study was taken from the JMA catalogue from 2008 to 2010. Subareas covering whole of the inland of Japan with a size of 1 x 1 degree were considered, and sequences of shallow (depth ≤ 30 km) were constructed for each of the subareas. The earthquake sequences were divided into one-day increments, and divided sequences were stacked in each of the subareas. Then, a Bayesian approach with a piecewise linear function and smoothness constraint [Iwata, 2008, GJI; 2011, Research in Geophysics] was applied to these stacked data to estimate the daily variation of m in each of the subareas. The value of s and the b-value of the GR law were also estimated through the framework of the maximum likelihood method.

In this study, the value of $m+3s$, corresponding to the magnitude where the detection rate is approximately equal to 99.9%, was regarded as the completeness magnitude. In most of the subareas, the value of $m+3s$ is close to 1 or less than 2, which is consistent with Nanjo et al. [2010, BSSA] investigating M_c in Japan using the 1-year JMA catalogue. In a few subareas, however, the value of $m+3s$ exceeds 2, suggesting that, to ensure the completeness of an earthquake catalogue, it is important to consider the daily variation of the detection capability.

Keywords: completeness magnitude, earthquake catalogue, Bayesian statistics, statistical seismology