Japan Geoscience Union Meeting 2012

(May 20-25 2012 at Makuhari, Chiba, Japan)

©2012. Japan Geoscience Union. All Rights Reserved.

SSS39-P07

Room:Convention Hall

Time:May 25 13:45-15:15

P-wave velocity structure in the southernmost source region of the 2011 Tohoku earthquakes, off the Boso Peninsula

NAKAHIGASHI, Kazuo^{1*}, SHINOHARA, Masanao¹, MOCHIZUKI, Kimihiro¹, YAMADA, Tomoaki¹, HINO, Ryota², SATO, Toshinori³, UEHIRA, Kenji⁴, ITO, Yoshihiro², MURAI, Yoshio⁵, KANAZAWA, Toshihiko¹

¹Earthquake Research Institute, ²RCPEV, Graduate School of Science, Tohoku University, ³Graduate School of Science, Chiba University, ⁴Institute of Seismology and Volcanology, Faculty of Sciences, Kyushu University, ⁵Institute of Seismology and Volcanology, Faculty of Science, Hokkaido University

The Japan Trench (JT) is a plate convergent zone where the Pacific Plate (PAC) is subducting below the Japanese island. In the southern end part of the JT, there is a trench-trench-trench type triple junction. The Philippine Sea plate (PHS) is subducting northwestward from Sagami Trough and the PAC is subducting westward beneath the PHS from Japan and Izu-Bonin Trenches. The deep seismic structural information is important to understand the evolution of the triple junction. In 2008, a seismic experiment was conducted using ocean bottom seismometers and controlled sources comprising ariguns and explosions in the off-Ibaraki and Boso Peninsula. This region is the southern edge of the rupture zone of the 2011 off the Pacific coast of Tohoku Earthquake. We estimated the heterogeneous velocity structure beneath the landward slope of the southern part beneath the seismic survey profile. The subducting PHS is imaged beneath the southern part of profile. However, we could not obtain the distinct image of contact zone of PHS and PAC. It is conceivable that the contact zone of PHS and PAC has large heterogeneity resulting from strong deformation. We infer that the termination of the rupture of the 2011 Tohoku Earthquake and the large afterslip in the collision region are caused by this strong heterogeneity.