Japan Geoscience Union Meeting 2012

(May 20-25 2012 at Makuhari, Chiba, Japan)

©2012. Japan Geoscience Union. All Rights Reserved.

U04-P03

会場:コンベンションホール

時間:5月25日15:30-17:00

オマーンに湧出する高アルカリ泉周辺環境におけるカルシウム炭酸塩鉱物多形生成の地球化学反応モデリング

Geochemical reaction modeling of $CaCO_3$ polymorphs formation at hyperalkaline springs in Oman.

松原 勇武¹*, 星野純¹, 安楽 総太郎¹, 佐藤 努², 米田哲朗² MATSUBARA, Isamu¹*, Jun Hoshino¹, ANRAKU, Sohtaro¹, SATO, Tsutomu², Teturou Yoneda²

1 北海道大学大学院工学院, 2 北海道大学大学院工学研究院

¹Graduate School of Engineering, Hokkaido University, ²Faculty of Engineering, Hokkaido University

In Japanese transuranic (TRU) waste disposal facilities, 129I is the most important key nuclide for the long-term safety assessment. Thus, the Kd values of I to natural minerals are important factor in the safety assessment. However, the degradation of cement materials in the repositories can produce high pH pore fluid which can affect to anion transport behavior. Therefore, it should be necessary to understand behavior of anions such as I- under the hyperalkaline conditions.

Natural hyperalkaline spring water (pH>11) has known to generate from the partly serpentinized peridtite in the Oman ophiolite. The spring water is characteristically hyperalkaline, redusing, low-Mg, Si and HCO_3^- , and high Ca, while the river water is moderately alkaline, oxidizing, high-Mg and HCO_3^- . The mixing of these spring and river water caused the formation of secondary minerals. Naturally-occuring hyperalkaline conditions near the springs in Oman were used as natural analogue for the interaction between cement pore fluid and natural Mg-HCO₃⁻ groundwater.

Anraku *et al.* (2009) said that calcite(CaCO₃), aragonite (CaCO₃), hydrotalcite[Mg₆Al₂CO₃(OH)₁₆] were observed in the precipitates, and their mineral compositions were varied depending on the difference of sampling points. Moreover, Anraku *et al.* (2009) also said that Iodine can be remarkably fixed in aragonite. If aragonite can also form in disposal condition, safety ratio in the long-term safety assessment will be increased by generation of aragonite.

The main goal of this work is to incorporate the effect of fixing iodine by aragonite into safety assessment. With this aim, we carried out the in-situ synthesis experiment in order to simplify the condition of secondary minerals formation in Oman. Moreover, we tried to model which can express the reaction of the in-situ synthesis experiment.

The in-situ synthesis experiment was conducted by mixing different ratios between spring and river water. The precipitates were synthesized by letting mixing solutions stand for 2days. The mineralogy of the precipitates was determined by X-ray diffractometer (XRD), scanning electron microscope (SEM). In addition, mass of minerals in the precipitates were obtained by Rietveld method. In the result of this experiment, aragonite formed in all precipitates, and increasing the percentage of river water caused decreasing the percentage of calcite in the precipitates.

The geochemical reaction modeling was performed by using Geochemist's workbenchR8.0 based on the result of the in-situ synthesis experiment. Aragonite is well-known as more unstable phase than calcite in earth's surface condition. In equilibrium state, aragonite will not form. Berner (1975) said that Magnesium ion is a inhibitor of calcite growth kinetics. And there is no inhibition of aragonite growth by magnesium ion. Our result showed the same tendency with Berner (1975). Thus, We incorporated Mg inhibition model calculated by Lin and Singer (2009) into our models. the percentage of calcite/aragonite in modeling results corresponded approximately to experimental results. Since generation of aragonite can be possible to calculate, safety ratio in the long-term safety assessment can be increased by generation of aragonite.

キーワード: カルシウム炭酸塩鉱物, 多形, 地球化学反応モデリング, 反応速度論, 放射性廃棄物処分, ナチュラルアナログ Keywords: Calcium carbonate mineral, Polymorphs, Geochemical reaction modeling, Kinetics, Radioactive waste disposal, Natural analogue