Trends of air pollution over the East China Sea analyzed with 20 years aerial observation data

HATAKEYAMA, Shiro¹, IKEDA, Keisuke¹, TAKAMI, Akinori², MURANO, Kentaro³, BANDOW, Hiroshi⁴

¹Tokyo University of Agriculture and Technology, ²National Institute for Environmental Studies, ³Hosei University, ⁴Osaka Prefecture University

[Introduction] We have continued aerial observations over the seas between Asian continent and Japan for twenty years in order to analyze the transport and transformation of long-range transported atmospheric pollutants. Covered areas are the East China Sea, the Sea of Japan, and the Yellow Sea. During this period the economic growth in East Asia, particularly in China, was remarkable and as a result emission of atmospheric pollutants increased tremendously. In this report we will show the results of our analyses on the long term trend of gaseous pollutants such as SO₂ and ozone as well as ionic components of aerosols.

[Used data] The data used for the analyses were 11 data sets, i.e., those obtained in PEACAMPOT program in October, 1991, November, 1992, March and December, 1994, January and December, 1997, February, 1999, and March 2001 as well as those in LEXTRA program in March-April, 2008, and those in ASEPH project in October, 2009 and December, 2010.

Aircrafts employed were Cessna 404, and Fairchild Swearingen chartered from Showa Aviation Company, and Beachcraft Kingair 200T chartered from Diamond Air Service. The target of the observations was lower tropospheric (below 3000 m) atmosphere.

Items of observations common for 20 years experiments were gaseous species such as ozone, SO₂, and NOx (NOy) as well as ionic species in aerosols collected with a high-volume tape sampler. Sulfate, nitrate, ammonium, and calcium were the main ionic species analyzed.

[Results and Discussion] Anthropogenic species in the gas phase (SO₂ and ozone) and aerosol phase (SO₄²⁻, NO₃⁻, and NH₄⁺) were analyzed in this presentation.

Sulfate and ammonium showed a quite similar trend. That means sulfate and ammonium existed in the form of (NH₄)₂SO₄ and/or NH₄HSO₄. It seems that sulfate is decreasing from 2001. Unfortunately, since the data between 2002 and 2007 are lacking (we carried out aerial observations over the main land China in that period), it is not obvious. However, it is reported that the emission of SO₂ in China is decreasing from 2006 (Lu et al., 2010). Our results seem in accordance with the report, although decreasing trend of SO₂ was not very clear in this work.

In contrast, was low before December, 1997 (maximum 1.5 ug/m³), but it is increasing after 1999 having maximum concentrations exceeding 7 ug/m³. It seems to show an increasing trend. Emission of NOx, which is a precursor of NO₃⁻, is increasing in China (Ohara et al., 2007), and that can cause increase of NO₃⁻ over the East China Sea. More clearly, the ratio of NO₃⁻/SO₄²⁻ increases reflecting the trends of sulfate and nitrate.

Ozone was analyzed using histograms for former period (1991-1999) and latter period (2001-2010). In 1990s ozone in the range of 40 < O₃ conc. < 45ppb appeared most frequently, whereas ozone in the range of 65 < O₃ conc. < 70ppb appeared most frequently in 2000s. This feature was more remarkable in the lower troposphere below 1500 m. Ozone in the boundary layer is increasing because of anthropogenic emission of NOx in China.

Keywords: aerial observation, East China Sea, aerosol, ionic species, trans-boundary air pollution, ozone
Chemical analysis of transported and urban aerosols

MIYOSHI, Takao1*, TAKAMI, Akinori1, IREI, SATOSHI1, SATO, Kei1, SHIMONO, Akio2, HIKIDA, Toshihide2, HARA, Keiichiro3, HAYASHI, Masahiko3, KANEYASU, Naoki4, HATAKEYAMA, Shiro5

1NIES, 2SLS, 3Fukuoka U, 4AIST, 5TUAT

East Asia is a source of large amounts of anthropogenic SO2, NOx, and volatile organic compounds in the atmosphere. The region’s economy is developing rapidly, and energy consumption is also increasing. There is serious concern that the emissions of atmospheric pollutants will increase accordingly. Fukuoka City is located in the northern Kyushu and is influenced by anthropogenic pollutants transported from the continent. On the other hand, Fukuoka City is a large city, which has a population of 1.5 million and is a source of large amounts of anthropogenic pollutants. It is thought that there are pollutants from the local area and the continent in Fukuoka City in spring. We measured chemical components and mass concentrations of atmospheric aerosols at Fukuoka University and analyzed the data by Positive Matrix Factorization (PMF) method in order to research the influence of trans-boundary air pollution on air quality of urban areas.

Chemical components of atmospheric aerosols were measured by Aerosol Mass Spectrometer (Q-AMS) at the fourth floor of Building 18 (Faculty of Science), Fukuoka University. The chemical components were sulfate, nitrate, ammonium, chloride and organics. Mass concentration of PM2.5 was observed by TEOM (RP1400) at the roof of Building 18.

The observation showed periods in which sulfate was rich and in which nitrate and organics were rich. The previous measurement by Q-AMS at Fukue Island, Nagasaki and Cape Hedo, Okinawa implied sulfate-rich period was influenced by long-range transport from the continent and nitrate and organics-rich period was influenced by atmospheric pollutants from Japan and Korea.

In sulfate-rich period, the size distribution had one mode of around 0.6micrometer and was similar to the results at Fukue Island and Cape Hedo. Analysis by back trajectory (NOAA-HYSPLIT4) showed the air mass was transported from China. In nitrate and organics-rich period, the size distribution had two modes of around 0.2 and 0.6micrometer. In the cases where air quality was influenced by pollutants from only urban areas, a single mode was around 0.1micrometer. Sulfate, nitrate and organics showed bi-modal distribution characteristically and nitrate was rich in a mode of smaller size in this measurement. These results suggested air quality in Fukuoka City was not mainly influenced by long-range transport. However because sulfate concentration was relatively high and the m/z=44 signal corresponding to COO fragment in the mass spectra was observed, the pollutants both from the continent (long-range transport) and from domestic sources and Korea (middle-range transport: at most 100-200km) were transported to Fukuoka City.

Organics were analyzed using PMF method. As a result the factors corresponding to aerosols from urban areas and the continent were obtained. The contribution of each factor was also estimated.

Keywords: Fine Particle, Fukuoka, Q-AMS, PMF
Estimating health effects of atmospheric aerosol particles

UEDA, Kayo1,∗, NITTA Hiroshi1

1National Institute for Environmental Studies

There is evidence supporting that atmospheric aerosol particles inhaled into the respiratory tract have adverse health effects on respiratory and cardiovascular systems. Toxicological studies have shown the following biological mechanisms. Aerosol particles deposited on airway and alveolar surface could 1) induce inflammation in the lung and its airways which results in lung damage, 2) induce respiratory hypersensitivity and aggravate asthma and allergic rhinitis, 3) increase susceptibility to respiratory infection. It is also suggested the pathways for cardiovascular diseases. Particles could 1) trigger arrhythmias and cause adverse cardiac function by changing autonomic nervous system regulation, 2) increase superoxide and accelerate remodeling of blood vessels, 3) activate platelet/coagulation which trigger the atherothrombotic events of coronary arteries.

Most of the studies examining the association between ambient aerosol particles and human health using epidemiological methods are from North America and Europe. In those studies, the magnitude of the health effects of ambient aerosol particles is estimated by comparing the daily number of health events (such as death, hospitalization, and emergency room visits) and daily concentration of particles. In Japan, we combined the mortality data and concentration of PM\textsubscript{2.5} (particles with diameter less than 2.5 micrometer) measured at the monitoring stations for 20 cities during 2002-2004, and observed that PM2.5 concentration was positively associated with the number of deaths due to respiratory diseases. Although the results did not show significant association between PM\textsubscript{2.5} concentration and mortality due to cardiovascular diseases (heart diseases and stroke), we found that PM\textsubscript{2.5} was associated with mortality specific cardiac disease (acute myocardial infarction).

Previous epidemiological studies have also suggested the health effect varies by area and season. It is possible that the difference in particles composition is attributed to the effect size.

Keywords: aerosol particles, health effects
Perspective on atmospheric chemistry and climate change from aerosols

TAKEMURA, Toshihiko

1RIAM, Kyushu University

Atmospheric aerosols, as well as causing respiratory and allergic diseases, submicron-sized material in order to circulate throughout the body are incorporated into the blood from the lungs, which is known to potentially cause any diseases. Japan had a problem of air pollution by aerosols throughout a period of high economic growth after World War II, and in recent years it has been frequent around the western region that air pollution caused by rapid economic growth in China (Yamaguchi and Takemura, 2011). As China has suffered severe air pollution remains (Washington Post, 2012), it is necessary to clarify the physical and chemical properties, behavior in the atmosphere, and health effects of aerosols. In particular, considering that the desulfurization equipment is gaining popularity even in developing countries, quantitative assessment and prediction of properties of nitrate particles, with complex chemical reaction than sulfate, and organic particles will become more important. As for the increased levels of photochemical oxidant which is one of the air pollution, in Japan, the advisory and warning are made known to the public when the level is high because the criteria of them is clear. On the other hand, the communication system to the public has not been established when the aerosol concentration is high with low concentrations of photochemical oxidant and Asian dust. With the Japan’s environmental standard of PM2.5 set in 2009, it is important to quickly develop a system to disseminate information on observation and forecasting of air pollutants.

Aerosols, in addition to air pollution, absorb or scatter solar and infrared radiation (direct effect), and act as nuclei of clouds (indirect effect), so that the change in their concentration causes climate change by changing the energy balance in the atmosphere. In addition, the aerosol contribution to the marine ecosystem as a nutrient, changes in snow surface albedo due to deposition of the aerosols that absorb radiation, providing opportunities for chemical reactions (heterogeneous reactions), and etc., have been pointed out to impact on climate. However, the evaluation of the radiative forcing relative to the preindustrial era in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) still has a large uncertainty; -0.1 to -0.9 W m\(^{-2}\) for the direct effect, -0.3 to -1.8 W m\(^{-2}\) for the first indirect effect, and 0.0 to +0.2 W m\(^{-2}\) for the change in snow surface albedo due to deposition of black carbon. There are various factors to produce these uncertainties both in observation and numerical modeling studies. As the aerosol radiative forcing, even though they are quantitatively similar to that of greenhouse gases, has large uncertainties, reduction of the uncertainties is a major key in terms of predicting future climate change.

In this lecture, the global aerosol climate model SPRINTARS (Takemura et al., 2005, 2009) provides central topics for researches in order to think about the direction in addressing the above issues.

References

Keywords: aerosol, climate change, atmospheric chemistry, atmospheric pollution
Underlying uncertainty in future projection of marine ecosystem feedbacks to climate change

ITO, Akinori¹*, KOK, Jasper F.², FENG, Yan³, PENNER, Joyce E.⁴

¹JAMSTEC, ²Cornell University, ³Argonne National Laboratories, ⁴University of Michigan

It is widely recognized that uncertainty in the deposition flux of bioavailable iron to the ocean is large and that the value assumed can influence the air-sea carbon dioxide fluxes and thus radiative forcing significantly. Global models have been used to deduce atmospheric iron supply to the ocean, but uncertainty in the deposition flux remains large, in part because of uncertainty in the size distribution of mineral aerosols. We used a global chemical transport model to investigate the effect of the estimated size distribution of dust on the bioavailable iron deposition. Simulations are performed with six different size distributions for dust aerosols at emission using similar aerosol optical depths (AODs) to constrain the total emission flux of dust. The global dust emission rate using a recent theoretical estimate for the dust size distribution at emission is about two times larger than the average of estimates using the other four empirical size distributions. In contrast to the large differences in total emissions, the dust emission of fine particles is relatively robust, due to the strong constraint of AOD on clay emission. Our model results indicate that soluble iron (SFe) deposition is relatively invariant to the dust size distribution at emission in significant portions of the open ocean, where fine particles play a dominant role in soluble iron supply. In contrast, the use of the theoretical size distribution suggests a larger deposition of SFe (by a factor of 1.2 to 5) in the South Atlantic. These results could have important implications for the future projection of marine ecosystem feedbacks to climate change and highlight the necessity to improve the dust size distribution.

Keywords: mineral aerosol, atmospheric chemical transport model, soluble iron supply, size distribution, air pollutant, climate change
Development and validation of a size and mixing state resolved three-dimensional model

MATSUI, Hitoshi1, KOIKE Makoto1, KONDO Yutaka1, MOTEKI Nobuhiro1

1Graduate School of Science, University of Tokyo

The mixing state of black carbon (BC) aerosols is one of the most important issues for estimating radiative and climatic impact of aerosols. In this study, we developed a size and BC mixing state resolved three-dimensional model based on the WRF-chem model (MS-resolved WRF-chem). We adopted two-dimensional aerosol bin representation: one dimension is aerosol dry diameter (12 bins between 40 nm and 10\,um) and another dimension is BC mass fraction to total aerosol mass concentrations in dry condition (10 bins). The detailed aerosol microphysical processes such as condensation/evaporation and coagulation are simulated with 120 aerosol bins.

The MS-resolved WRF-chem model was applied to East Asia in March and April 2009 when the A-FORCE aircraft campaign was conducted over the Yellow Sea and the East China Sea. Model calculations were compared with observed BC mixing state obtained by a single-particle soot photometer (SP2). Model calculations generally reproduced the main features of observed BC mixing state (e.g., BC-free to total aerosol number concentration ratio, diversity of shell (total particle dry diameter) to BC core diameter ratios (SC ratio), mean SC ratio, and their temporal variations and diameter dependence).

We evaluated the impact of microphysical processes (condensation and coagulation) on the BC mixing state of atmospheric particles. Sensitivity simulations suggest that BC aging processes can be classified into two regimes. Condensation processes are dominant for the growth of thinly coated BC particles (higher BC mass fractions), while coagulation processes are necessary to produce thickly coated BC particles (lower BC mass fractions). Although the impact of coagulation processes on total aerosol mass concentrations are very limited, they would be important in terms of the optical and radiative properties and the lifetime of BC.

We also conducted sensitivity simulations focused on mixing state of emissions. We compared two simulations: 1) the base case simulation in which all the BC emissions were assumed to be externally-mixed particles and 2) the sensitivity simulation in which about 50\% of BC emissions were assumed to be internally-mixed particles based on the measurements at an urban site in Tokyo. The results suggest that the mixing state in emissions is an important factor to understand the BC mixing state of atmospheric particles more quantitatively.

Keywords: Aerosol, Black carbon, Mixing state, Regional three-dimensional model, Bin model, East Asia
Optical properties of secondary organic aerosols from photooxidation of toluene: wavelength and NOx dependence

NAKAYAMA, Tomoki1, SATO, Kei2, MATSUMI, Yutaka1, IMAMURA, Takashi2, YAMAZAKI, Akihiro1, UCHIYAMA, Akihiro3

1Solar-Terrestrial Environment Laboratory, Nagoya University, 2National Institute for Environmental Studies, 3Meteorological Research Institute

Atmospheric aerosol plays an important role in visibility, health effects, heterogeneous chemistry, and radiation balance from local to global scale. Recently, it has been suggested that some organic aerosols, which is called ‘brown carbon’, can absorb solar radiation, especially at the ultraviolet (UV) and shorter visible wavelengths and contribute to the radiation balance and photochemical reactions in the atmosphere. Our group [Nakayama et al. JGR2010] retrieved the real and imaginary parts of RI at 355 and 532 nm for the SOAs generated from the photooxidation of toluene in the presence of NOx (toluene-SOAs) under the condition of [HC]_{ini} = 4.0 ppm and [NOx]_{ini} = 540 ppbv, by measuring extinction and scattering coefficients using cavity ring-down spectrometer (CRDS) and nephelometer, respectively. Non-negligible k value was obtained at 355 nm, while no evidence of light absorption by the toluene-SOAs at 532 nm was found because of the difficulty to quantify the small difference between extinction and scattering coefficients. Therefore, direct measurement of absorption coefficient is desired for the accurate determinations of the small k value. Nitrated aromatics compounds such as nitro-cresols were considered as plausible sources of the light absorption at UV and shorter visible wavelength. The production quantum yield of nitrated aromatic compounds may depend on initial mixing ratio of [NOx]_{ini}, however, the k values were measured under limited [NOx]_{ini} conditions. In this work, wavelength and NOx dependence of the complex RI values of the toluene-SOAs are investigated in detail. To determine small k value accurately, a three wavelength photoacoustic spectrometer (PASS-3) are applied to measure the light absorption of the SOAs suspended in air, directly.

The SOAs were generated in a 6 m3 Teflon coated stainless steel photochemical smog chamber in the absence of seed particles. The reaction mixture of toluene and NO was continuously irradiated by light from a xenon arc lamp through Pyrex filters after the addition of a small amount of methyl nitrite as a source of OH radicals. Four experimental runs were conducted for toluene-SOAs with different [NOx]_{ini} conditions (109-571 ppbv) to examine the NOx dependence of RI values. When the mass concentration of the SOAs started to increase, the SOAs were introduced into the PASS-3 (absorption and scattering at 405, 532, 781 nm) and a custom-built CRDS instruments (extinction at 532 nm) to measure optical properties. Chemical properties of aerosols were also measured by an Aerodyne aerosol mass spectrometer (ToF-AMS) driven in V-mode. The size distributions of SOAs were measured by a scanning mobility particle sizer (SMPS).

Absorption, scattering, and extinction efficiencies of SOAs are calculated by dividing the absorption, scattering, and extinction coefficients by total mobility cross sections measured with the SMPS. Refractive index of the SOAs is determined by comparing the size parameter dependence of extinction, scattering, and absorption efficiencies with Mie theory. The significant k values at 405 nm, which are almost linearly increased from 1.8×10^{-3} to 7.2×10^{-3} with increasing of [NOx]_{ini} from 107 to 571 ppbv, are obtained. At 532 nm, non-negligible k value (1.0×10^{-3}) is also obtained under high [NOx]_{ini} conditions, while the values for other runs are negligibly small within the experimental uncertainties. If the light absorbing species involving nitro-aromatic compounds are assumed to be mainly produced from the reaction of toluene-OH adduct with NO2, the observed strong [NOx]_{ini} dependence of the k values at 405 nm can be explained by the change in the formation yield of these species. In the presentation, relationship with chemical properties and the atmospheric implications of the results will also be discussed.

Keywords: Aerosol optical properties, Secondary organic aerosol, Brown carbon, Refractive index, Mass absorption cross section, Toluene
Optical properties of diesel exhaust particles

GUO, Xuesong1*, NAKAYAMA, Tomoki1, MATSUMI, Yutaka1, Hiyroyuki Yamada2, TONOKURA, Kenichi3, INOMATA, Satoshi4

1Solar-Terrestrial Environment Laboratory, Nagoya University, 2National Traffic Safety and Environment Laboratory, 3The University of Tokyo, 4National Institute for Environmental Studies

Aerosol particles influence climate directly by scattering and absorbing of an incoming solar radiation and indirectly by acting as cloud condensation nuclei. Diesel exhausts partials (DEP) are known as one of main anthropogenic source of element carbon (EC), and organic carbon (OC). The light absorption of BC is generally considered to be increased by coating with OC, which is called lensing effect. In addition, recently light-absorbing OC, 'brown carbon', involving humic-like substance (HULIS), organonitrate, and nitro-aromatics etc., has been proposed as a source of significant absorption, particularly in the near-UV. However, contributions of lensing effect and brown carbon for DEP have not been well known because of the difficulty in the accurate measurement of light absorption of internally mixed BC particles without collecting on filter. In this study, a photoacoustic soot spectrometer three wavelength (PASS-3) has been applied to research optical properties of DEP.

A diesel engine was operated in a car driven on a chassis dynamometer with an urban driving mode (JE05) and constant speed mode (0 km/h or 70 km/h). The diesel exhaust was diluted and then sent through a heater before the measurement of optical properties. Absorption and scattering coefficients at 405, 532, and 781 nm of the DEP are measured by the PASS-3. Size distributions of DEP before and after heating are also measured by two scanning mobility particles sizers (SMPS) during constant mode experiments.

For the JE05 mode, optical properties were measured with inlet temperatures of 20, 100, and 300 degC. Enhancement of scattering coefficient was observed during acceleration and deceleration patterns before and after high speed driving (~80 km/h) at 25 and 100 degC. The result that the enhancement was not detected at 300 degC indicates that emission of volatile OC compositions increased during the patterns. From the observed absorption coefficients, absorption Angstrom exponent (AAE) is calculated. The AAE values between 405 and 532 nm are found to increase during the periods when volatile OC compositions increase at 20 and 100 degC, while the AAE values are almost constant at 300 degC. By assuming that OC was removed by heating up to 300 degC and that light absorption by OC is negligible at 781 nm, the contributions of light absorption by OC to total light absorption at 405 and 532 nm are estimated to be ~15% and <5%, respectively.

For the constant mode, optical properties of DEP were measured with variety of inlet temperatures between 20 and 400 degC. No significant temperature dependence of AAE between 405 and 532 nm was found in both case of idling and 70 km/h patterns. The result indicates that the contribution of light absorption by OC is small (<6%). By comparing absorption coefficients at 20 and 400 degC, increase in light absorption by coating during idling and 70 km/h patterns are estimated to be 20 and 15%, respectively.

Recently, Dr. Inomata and co-workers detected nitro-aromatics in gas and particle phases of diesel exhausts from the same car. The concentrations of nitro-aromatics in gas phase are significantly high during the same periods, when the light absorption by OC was found in the present study. Therefore, nitro-aromatics in DEP can be considered as plausible sources of light absorbing OC, observed in this study.

Keywords: Aerosol optical properties, Diesel exhaust particle, Photoacoustic spectroscopy, Lensing effect, Black carbon, Brown carbon
Direct measurement of aerosols and cloud residues using airborne CVI

MATSUKI, Atsushi1*, SCHWARZENBOECK Alfons2, QUENNEHEN Boris2, DEBOUDT Karine3, JOURDAN Olivier2, FEBVRE Guy2, GOURBEYRE Christophe2, GAYET Jean-Francois2

1Kanazawa University, 2LaMP, 3LPCA

The POLARCAT (POLar study using Aircraft, Remote sensing, surface measurements and modelling of Climate, chemistry, Aerosols and Transport), is an international program endorsed as part of the 4th International Polar Year (IPY) in 2007 and 2008 (co-sponsored by ICSU/WMO), which aims to quantify the impact of trace gases, particulate aerosols and heavy metals transported to the Arctic and their contribution to pollutant deposition and climate change in the region. The contribution from the POLARCAT-France team (http://www.polarcat.no/activities/polarcat-cnrs) involved in-situ aircraft measurements to better quantify the impact of aerosol particle properties on the cloud characteristics in the Arctic during the spring 2008 campaign. The focus of this particular study is to conduct detailed characterization of individual cloud residual and interstitial aerosol particles collected using an airborne CVI (Counterflow Virtual Impactor), and provide insights into the cloud nucleating properties of the Arctic aerosols.

The ATR-42 research aircraft was stationed at Kiruna airport (67°50’N, 20°20’E, 460m a.m.s.l.) in the north of Sweden, from 30 March to 11 April 2008 during the POLARCAT-France spring measurement campaign. The aircraft made multiple level flights in the presence of cloud layers and pollution plumes in the low-mid troposphere (0.3-6 km). Tropospheric aerosol particles as well as residues from various clouds (ice, liquid or mixed phase) extracted by the CVI were analyzed later in the laboratory on individual particles basis under both Scanning and Transmission Electron Microscopes coupled to Energy Dispersive X-ray detectors (SEM- and TEM-EDX).

Submicron Biomass Burning (BB) particles (enriched in K, S and often internally mixed with soot) were characteristically found in polluted air-mass in the Arctic troposphere. Such BB particles were also extracted especially from liquid phase clouds but not as frequently from ice phase clouds. On the other hand, mineral dust, bare soot, flyash and marine (sea salt often enriched in K) particles dominated the submicron ice cloud residues.

The enrichment of marine particles in ice and mixed phase residues and abundance of BB particles as interstitial aerosols found in our study is surprisingly consistent with the results during CRYSTAL-FACE experiments (Cziczo et al., 2004). They also reported high abundance of sea salt found in the ice residue versus a low quantity found in the interstitial aerosol. BB related particles (those with mass spectral features owing to Sulfates, K+, Organics, and NO+), conversely, represents the vast majority of interstitial aerosol particles but with lower representation as ice residue. This similarity is striking considering the different analytical methods involved and geographical settings (i.e. cirrus clouds over Florida in 13km).

Reference:

Acknowledgement:
POLARCAT-France campaigns was funded by the French research agencies ANR, CNES, CNRS-INSU (LEFE-CHAT), IPEV, EUFAR and CLIMSLIP-LEFE. Special thanks to SAFIRE for their support during the planning and execution of the French ATR-42 campaigns, and DT-INSU for their help with the instrument integration.
Mass spectrum analysis for aerosol particles with different hygroscopicity: Observation in the atmosphere of Nagoya

MOCHIDA, Michihiro1, SETOGUCHI, Yositaka3

1Graduate School of Environmental Studies, Nagoya University

The differences in the chemical composition from particle to particle in atmospheric aerosol are potentially very important to understand the roles of the particles in the atmosphere, e.g., the role as cloud condensation nuclei. Recent studies explored the relationship between the particle composition and the hygroscopicity based on single particle analysis (e.g., Zelenyuk et al., 2008; Herich et al., 2008), and demonstrated the capability of this method for the assessment of the aerosol mixing state. In this study, we performed single particle measurements for urban aerosols using an instrumental system that is an combination of a hygroscopicity tandem differential mobility analyzer (HTDMA) and a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) equipped with a light scattering (LS) module.

Single particle mass spectrum analysis for urban aerosols were performed in Higashiyama Campus, Nagoya University, Nagoya, Japan from 8 to 15, November 2011. Sample aerosols that passed through a PM1 cyclone and diffusion dryers were introduced to the HTDMA. Particles with dry mobility diameters of 330 nm were selected in the first differential mobility analyzer (DMA) of the HTDMA, then the classified aerosol was humidified and introduced to the second DMA. The particles with different diameters under the humidified conditions were selected and introduced to the HR-ToF-AMS equipped with the LS module. The collected data were analyzed using the LS analysis software.

Both the increases in the LS and mass spectrum signals were observed at least for some of the recorded data, indicating a successful detection of single particles after the classification based on both size and hygroscopicity in the HTDMA. Preliminary analysis, although it is for a very small number of samples, shows that the mass spectra varied substantially depending on particles. Although more analyses, including the analysis about the particle detection efficiency, should be performed to adequately assess the performance of the observation using the system, the initial result suggests that this method is usefulness to understand the relationship between the chemical composition and the hygroscopicity of aerosol particles.
Analysis of chemical composition and size distribution of urban aerosol under three temperature conditions

SETOGUCHI, Yositaka 1,*, Kaori Kawana 1, Shuhei Ogawa 1, Tomoki Nakayama 2, Yuka Ikeda 2, Yuki Sawada 2, Yutaka Matsumi 2, Michihiro Mochida 1

1Graduate School of Environmental Studies, Nagoya University, 2Solar-Terrestrial Environment Laboratory, Nagoya University

Atmospheric aerosol components evaporate or condense as a result of the changes in air temperature. The volatility is an important property for the atmospheric lifetime of aerosol components because it could influence on the rate of chemical reactions and the removal by deposition. Recently, Huffman et al. (2009) reported atmospheric aerosol measurement using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) coupled to a thermodenuder. Based on the measurements, they discussed the volatility of positive matrix factorization (PMF) components, i.e., hydrocarbon-like organic aerosol (HOA), semi-volatile oxygenated organic aerosol (SV-OOA), and low-volatility oxygenated organic aerosol (LV-OOA). Our knowledge on the volatility of PMF components including the relation to the size distribution is, however, still limited. In this study, we investigated the composition and size distribution of urban aerosols and assessed the differences under different temperature conditions.

The atmospheric observation was performed in Nagoya in August 2010. The chemical composition of aerosols was obtained by introducing them to HR-ToF-AMS after they passed through a PM1 cyclone, two diffusion dryers filled silica gel, and one of two heated pipes (100 and 300 degC) or a bypass tubing. We changed the temperature conditions that particles experienced to room temperature (RT), 100 degC, and 300 degC every 30 min. The data for the period from 16 to 25 August was analyzed.

In the first three days of the studied period, the concentrations of organics and inorganics were high. In the second three days, the concentration of nitrate was high in the morning on 21, whereas the concentrations of other components were low. In the last three days, the concentrations of organics and nitrate were low. Conversely, the concentrations of sulfate and ammonium were the highest in the morning of 23. The concentrations of chemical components at 100 and 300 degC were compared with those at RT. The mean concentrations of organics, nitrate, sulfate, and ammonium at 100 degC (or 300 degC) were, respectively, 73% (9%), 71% (18%), 94% (5%), and 91% (1%) of those at RT. While the concentrations of all these components decreased by the heating to 100 degC, the differences in the shape of the size distributions at different temperatures (RT and 100 degC) were not clear.

We calculated the size distributions of PMF components at RT and 100 degC based on (1) a method using the intensities of three peaks in the mass spectra (m/z 43, 44, and 57) and (2) a method using the signals in 187 different m/z in each diameters. The sum of the size distributions of the PMF components calculated using these two methods agreed well with the size distributions of total organics. The centroid diameters (in the log scale) of the size distributions of the PMF components averaged for one day (from 06 to 06 LT) at RT and 100 degC were calculated. The averages (and ranges) for HOA, SV-OOA, and LV-OOA at RT were, respectively, 365 nm (325-403 nm), 362 nm (267-436 nm), and 502 nm (433-546 nm), and those at 100 degC were, respectively, 353 nm (314-454 nm), 336 nm (212-404 nm), and 497 nm (459-544 nm). Whereas the mean centroid diameter of LV-OOA was larger than the mean centroid diameters of HOA and SV-OOA, the mean centroid diameters of HOA and SV-OOA were similar regardless of the temperature conditions.

Keywords: aerosol mass spectrometer, positive matrix factorization
Changes of shape and composition of sea-salt aerosol particles in an urban atmosphere

ADACHI, Kouji1, IGARASHI, Yasuhito1, BUSECK, Peter R.2

1Meteorological Research Institute, 2Arizona State University

Sea salt is one of the most abundant natural aerosol particles and, thus, has important influences on local and global climate. Aerosol samples were collected in Los Angeles area during the CalNex (California Research at the Nexus of Air Quality and Climate Change) campaign in 2010. Their compositions and shapes were analyzed using transmission electron microscopes (TEMs). Sodium (Na), which characterizes sea salt aerosol (SSA) particles, was detected from 43% of analyzed particles with aerodynamic diameters between 50 and 300nm. Almost all those SSA particles also contain S. Although relatively fresh SSA particles contained Cl, many aged ones did not have Cl, suggesting that Cl was replaced with sulfate as they aged in the urban atmosphere. From TEM observations, SSA particles were classified either round- or sharp-edged ones. Round-edged SSA particles were more aged (>12 hour) and reacted with sulfate than sharp edged ones. Model calculations indicate that compositions and shapes of SSA particles, both of which change within several hours in urban atmosphere, affect their hygroscopicity and light scattering, respectively. These results indicate that the climate effects of SSA depend on their ages, and such effects need to be considered in climate modeling.

Keywords: Transmission electron microscope, sea salt aerosol particles, CalNex, atmospheric pollution, California, aerosol aging
Atmospheric aerosol particles collected above and below clouds along the pass of Mt. Fuji

UEDA, Sayako1*, MIURA, Kazuhiko1

1Tokyo University of Science

Size and composition of atmospheric aerosol particles can be altered by in-cloud process with absorption/adsorption and drying of activated aerosol particles as cloud condensation nuclei. To elucidate differences of aerosol particles before and after in-cloud process, we made four sets of observations along the pass of Mt. Fuji, Japan (3776 m a.s.l.) during July and August 2011 using a portable optical particle counter and an aerosol sampler. Number concentrations of dried particles selected for cloud interstitial particles using a fog-cut impactor were measured to quantify tendencies of cloud activation condition in cloud. Aerosol samples for analysis of elemental composition were obtained above, in and below clouds, by using a cascade impactor. After shadowing by evaporation of Pt/Pd, individual particles on the samples were analyzed using a transmission electron microscopy (TEM) equipped with energy dispersive X-ray analyzer.

Clouds under up-wind conditions without rain were identified at three of the observations; the cloud altitudes were from 1700 m to 3300 m on 15th July, from 1300 m to 3300 m on 3rd August and from 2000 to 2400 m on 11th August. Aerosol number concentration above the clouds was one order lower than that below the clouds on 3rd August, but was equivalent with it on 15th July and 11th August. The backward air trajectories for 3rd August were also not similar altitudes of above and below the clouds. We compare the samples (for 15th July and 11th August) above and below cloud aerosols to identify the impacts of in-cloud process. Most of particles (0.5-2 um diameter) were sea salt, containing Na with some S and Cl both for samples above and below the clouds. For Na-containing particles of 15th July, sample averages of atomic ratio of Cl/Na above and below the clouds were 0.00 and 0.30, respectively. In the atmosphere, NaCl in aerosol particles can be changed to Na₂SO₄ or NaNO₃ by substitution reaction. On 15th July, the ratio of S/Na above the clouds (0.20) was higher than that below the clouds (0.16), but lower than that of Na₂SO₄ (0.5), implying that Cl in the sea salt particles was replaced by SO₄ and other components in the clouds. For 11th August, the ratio of Cl/Na was 0.00 above and below the clouds, while the ratio of S/Na above the clouds (0.31) was higher than that below the clouds (0.17). This result suggests that SO₂/sulfate components were absorbed or adsorbed onto sea salt particles after complete substitution of Cl.

Keywords: atmospheric aerosol particle, sea salt aerosol, in cloud process
During JARE48 (2006/2007), Japan-Germany cooperated airplane-borne aerosol measurement campaign (ANTSYO-II/AGAMES) was carried out around Neumayer, Kohnen and Syowa stations. This campaign aims to characterize aerosol properties in the summer Antarctic troposphere and understand spatial distributions and transport processes of aerosols. Here, we show the vertical distributions of aerosol constituents and their mixing states during the ANTSYO-II: AGAMES campaign.

Aerosol samples were taken using one-stage aerosol impactor (cut off diameter, ca. 0.2 micrometer) on board of "Polar-2" (Dornier 228, AWI). Aerosol measurements over Neumayer were made from 23 December 2006 till 31 December 2008 (including Kohnen flights on 28 ? 29 December), whereas the measurements around Syowa were carried out from 7 ? 24 January, 2007. Individual particles were observed and analyzed by TEM and SEM-EDX.

From the individual particle analysis, the following aerosol constituents were identified; (1) sulfate particles (sulfuric acid), (2) wholly Cl depleted sea-salt particles, (3) sea-salt particles containing Cl, (4) mineral particles, (5) CaSO$_4$ particels, (6) sulfate particles containing K, (7) sulfate particles containing Mg, and (8) phosphate particles. For quantitative comparison, relative abundance of each aerosol constituents was used in this study. Most of aerosol particles in all aerosol samples were sulfate particles without soot. Relative abundance of sulfate particles reached to >95% in samples collected in the free troposphere. Although higher relative abundance of sea-salt particles and wholly modified sea-salt particles were obtained in the lower troposphere, high abundance of sea-salt particles was found in the middle free troposphere (3000 ? 6000 m). In contrast to higher abundance of wholly modified sea-salt particles in the boundary layer - lower free troposphere, abundance of sea-salt particles containing Cl was higher in the free troposphere. The vertical features of sea-salt particles were important information to understand transport processes from origin of sea-salt particles into Antarctic region. In addition, sulfate particles containing K were identified often in aerosol samples collected in the upper free troposphere. Although relative abundance of sulfate particles containing K was mainly <1%, abundance in aerosol samples collected in the upper free troposphere over Kohnen station reached to ca. 7%. Because sulfate particles containing K can be released from combustion processes of fossil fuel and biomass, combustion-origin aerosol particles might be transported into the Antarctic regions via upper troposphere or lower stratosphere.

Keywords: aerosols, Antarctica, Troposphere, Spatial distributions
Development of online aerosol composition analyzers based on mass spectrometry

TAKEGAWA, Nobuyuki¹, Takuma Miyakawa¹, Naoki Takeda², Masahiko Takei², Noritomo Hirayama²

¹RCAST, University of Tokyo, ²Fuji Electric, Co., Ltd.

Recent advances in on-line mass spectrometric analyzers have largely improved our understanding of sources and processes of ambient aerosols. Specifically, Aerodyne aerosol mass spectrometers (AMS) have widely been used by many investigators under various environments. The AMS utilizes an aerodynamic lens to generate particle beams and collects particles by impaction on a heated vaporizer. The evolved gas is analyzed by electron impact ionization (EI) mass spectrometry. While the AMS is useful for quantitative analysis of non-refractory materials, the particle collection efficiency is typically less than unity and varies depending on chemical composition. This is because liquid particles can be collected at high efficiency, but solid particles tend to bounce off the surface. We have developed a new analyzer for the online measurement of aerosol composition: a particle trap laser desorption mass spectrometer (PT-LDMS). The main components of the PT-LDMS include an inlet assembly (critical orifice, aerodynamic lens, etc.), a particle trap enclosed by a quartz cell, a quadrupole mass spectrometer (QMS) with electron impact ionization, and a carbon dioxide laser. The particle trap consists of custom-made mesh layers, the structure of which was newly designed to reduce the loss of particles due to bounce. The laser is used to vaporize aerosol compounds captured on the particle trap. The evolved gas confined within the quartz cell is analyzed using the QMS to quantify the chemical composition of the particles. The concept of the particle trap and laboratory evaluation of the instrument will be presented.

Keywords: Aerosol Composition, Particle trap, Laser desorption, Mass spectrometer, Online measurement
Measurement of fluorescence from a single-particle in the ambient air

TAKETANI, Fumikazu¹*, KANAYA, Yugo¹

¹JAMSTEC

It is well known that atmospheric aerosol which influences radiation budgets by scattering and absorbing is significant species. For aerosol measurement, optical techniques are adapted widely. Of the techniques, fluorescence is one of useful techniques for detecting organic compounds in the aerosol particles, especially biological one. In this study, we employed a single-particle fluorescence sensor for the detection of fluorescence particles, to test the possibility for the classification of organic aerosol in the ambient air.

The single-particle fluorescence sensor, WIBS4, is installed a continuous-wave 635nm diode laser for the detection of particles and the determination of particle size. A forward scattering quadrant photomultiplier tube (PMT) used for determination of particle size and shape. The instrument is also utilized two pulsed xenon UV sources emitting at different wavebands (280nm and 370nm) for the detection of fluorescence from an UV-excited particle.

We demonstrated ambient air measurement from April 20 to May 20, 2010 using WIBS4 instrument and PM2.5 mass concentration monitor at the Yokosuka campus of JAMSTEC. In the May 2-4, high mass concentrations of PM2.5 (>50 ug/m3) were observed. From the particle size and shape analysis by WIBS4 instrument in this period, it was suggested that the dust particles were measured. Also from fluorescence analysis, observed particles have fluorescence, suggesting that some dust particles contain the fluorescent compounds.

Keywords: fluorescence, single particle, atmospheric aerosol
Aerosol and cloud analyses using NIES lidar network observation data

NISHIZAWA, Tomoaki¹, Sugimoto Nobuo¹, Matsui Ichiro¹, Shimizu Atsushi¹

¹National Institute for Environmental studies

We have established a ground-based lidar network (NIES lidar network) covering a wide area in East Asia since 2001 in order to monitor and understand the movements and the optical properties of Asian dust, air-pollution aerosols, and clouds. As part of the NIES lidar network observation, we have conducted shipborne lidar measurements using the research vessel MIRAI of JAMSTEC since 1999 in order to understand the optical properties of aerosols and clouds over ocean and provide vertical distribution data of aerosols and clouds for validation of numerical models and satellite-borne measurements. A compact two-wavelength (532 and 1064nm) backscatter (b) and one-wavelength (532nm) polarization (d) Mie-scattering lidar system (i.e., 2b+1d lidar system) with automatic measurement capability is used in the ground-based and shipborne observations. To better understand the optical properties of aerosols and clouds, we improved some lidars used in the ground-based lidar network observation by adding a channel measuring Raman scattering light from nitrogen gas. These improved lidars (Mie-Raman lidar system) can provide particle (i.e., aerosols and clouds) extinction data (a) at 532nm without assuming an extinction-to-backscatter ratio (i.e., 1a+2b+1d lidar system), unlike Mie-scattering lidar. We also constructed a new lidar system using High spectral resolution lidar (HSRL) technique; this lidar provides 1a (532nm), 2b (532 and 1064nm), and 1d (532nm) data like the Mie-Raman lidar. We installed the developed HSRL system on the vessel MIRAI and conducted the shipborne measurements over Indian ocean last year. To analyze the ground-based and shipborne 2b+1d lidar data, we developed algorithms to retrieve aerosol optical properties. The algorithms identify several main aerosol components in the atmosphere (e.g., dust, sea-salt, and air-pollution particles) and retrieve their extinction coefficients at each slab layer. These algorithms assume an external mixture of the aerosol components; mode radii, standard deviations and refractive indexes for each aerosol component are prescribed based on the literatures such as the Optical Properties of Aerosols and Clouds (OPAC) database; the optical properties for each aerosol component are computed from Mie theory on the assumption that their particles are spherical, except for dust. To consider the effect of nonsphericity, the dust optical properties are theoretically computed on the assumption that the particles are spheroidal. In these algorithm developments, we found that particle extinction data are useful to classify strongly light absorption particles. We are then developing an algorithm to identify black carbon particles as well as dust, sea-salt, and air-pollution particles with weak light absorption (e.g., sulfate and nitrate) using the ground-based and shipborne 1a+2b+1d lidar data. In the conference, we introduce the lidar systems used in the NIES lidar network observation and the observed data. We also present the outlines of the aerosol classification and retrieval algorithms and report the results of the application of the algorithms to the observed lidar data to demonstrate their abilities.

Keywords: aerosol, cloud, lidar, network observation
Impact of aerosols on tropospheric ozone photochemistry: Reduction of J values by dense aerosols at Rudong, China

KANAYA, Yugo1, Xiaole Pan1, IRIE, Hitoshi1, TAKETANI, Fumikazu1, TAKASHIMA, Hisahiro1, Zifa Wang2

1RIGC/JAMSTEC, 2IAP/CAS

We conducted an intensive field campaign observing ozone and its precursors and chemical components/physical and optical parameters of aerosol particles at Rudong (32.26N, 121.37E), Jiangsu, China in May/June 2010 under international collaboration. The site is located at the west side of Yellow sea and is away from Shanghai by 100 km and from Rudong city center by 15 km. We measured spectral actinic flux in the UV/vis wavelength region by using a spectroradiometer. The actinic flux was then convoluted with the absorption cross section and the photodissociation quantum yield to obtain photolysis rates of O3 (J(O1D)) etc., important for studying photochemical activity such as in-situ photochemical production of O3. J(O1D) and J(NO2) values around the noontime (SZA < 15 degrees) on cloudless days tend to significantly decrease with the aerosol optical depth (AOD, in a range of 0.17-1.26) determined by MAX-DOAS observations at 476 nm; the J(O1D) and J(NO2) values with AOD as high as 1.26 were only 58% and 74% of those with AOD as low as 0.17. The wide dynamic range in AOD there allowed us to characterize the decreases in J values. We used TUV ver. 4.6 radiative transfer model to calculate J values with variable AOD and single scattering albedo (SSA) values and they were compared with the observations (after correction to the values at total O3 = 330 DU). The observed J(O1D) and J(NO2) values on May 24 and 25, when the AOD ranged from 0.19 and 0.35, were in agreement with the modeled values with SSA = 0.85 and 0.90, respectively. The observed J(O1D) and J(NO2) on June 23, when the AOD was in a higher range (1.09-1.26), showed good agreement with the model at SSA=0.95. The SSA ranges for the two periods were in good agreement with those independently estimated from the scattering and absorption coefficients determined by a nephelometer (at ambient RH conditions) and a MAAP (multi-angle absorption photometer) instrument, being 0.87 and 0.94, respectively. Such J value decreases caused by the aerosol are supposed to limit the present-day ozone production rates over China; future reduction in aerosol will increase J values and thereby the ozone production rate there.

Keywords: Aerosol, Ozone, Photolysis rate, aerosol optical density, single scattering albedo
Transboundary pollution in association with ”cold surge” phenomena

WANG, Ping\(^1\), Masaya Endo\(^1\), Takao Suzuki\(^1\), KITA, Kazuyuki\(^1\), OGINO, Shin-Ya\(^2\), Seiichirou Yonemura\(^3\), Boossarasiri Thana\(^4\)

\(^1\)Faculty of Science, Ibaraki University, \(^2\)JAMSTEC, \(^3\)NIAES, \(^4\)Chularonkorn University

Tropospheric ozone plays crucial roles on the environment in the lower troposphere. In southeast Asia, active biomass burning and increasing human activities may increases the tropospheric ozone. In addition, transboundary transport of polluted air from China and/or India may affect on the tropospheric ozone in this region.

We have continuously monitored surface ozone and carbon monoxide concentration at Phimai, mid-east Thailand since 2007. Variations of the ozone and CO concentration are discussed in terms of the backward trajectories from Phimai. While they were very low in the wet season between late May and September, when monsoon brings air masses over Indian Ocean, they significantly increased during the dry season. In the early dry season, between late October and December, thet repeated increasing and decreasing. A meteorological analysis indicates that this semi-oscillating phenomenon occurred in association with the ”cold-surge” phenomenon, which transports relatively cold and high-pressure air from the inland of Asian continent, leading to transboundary transport of heavily-polluted air masses over south China. In the late dry season, anotherly wind brought polluted air in the south urban areas such as Bangkok. In addition, increasing diurnal variation of CO implies that biomass burning in the surrounding area affected the CO and ozone level.

Keywords: tropospheric ozone, southeast Asia, transboundary pollution, cold surge
Regional differences in the photochemical reaction paths of NO\textsubscript{X} estimated from the D17O tracer of nitrate

OHYAMA, Takuya1*, TSUNOGAI, Urumu1, KOMATSU, Daisuke1, NAKAGAWA, Fumiko1, Izumi Noguchi2, Takashi Yamaguchi2, Keiichi Sato3, Tsuyoshi Ohizumi3, TSUBOI, Kazuhiro4, Mizuka Kido5

1Faculty of Sci., Hokkaido University, 2Hokkaido Res. Org., Inst. Environ. Sci., 3Asia Center for Air Pollution Res., 4Meteorological Res. Inst., 5Toyama Pref. Environ. Sci. Res.

Anthropogenic activities emitted large quantities of NO\textsubscript{X} to the atmosphere. NO\textsubscript{X} are oxidized to nitrate via photochemical reactions with O\textsubscript{3} and OH radical. The photochemically produced nitrate finally deposited on to surface environments as dry and wet depositions during polluted air-mass transport. Increasing anthropogenic activities could increase the deposition flux. Besides, they could also change the photochemical reaction paths. However, it is difficult to determine the major photochemical path through the observation only on the concentration of either NO\textsubscript{X} in atmosphere or nitrate in wet deposition.

The triple oxygen isotopic composition (D17O = d17O - 0.52 * d18O) of nitrate can be a useful tracer to quantify the contribution of O\textsubscript{3} within the photochemical paths. The photochemically produced nitrate via O\textsubscript{3} having large 17O anomaly shows large D17O value, whereas that via OH radical, by contrast, shows small D17O value. Thus, we could clarify the major photochemical oxidation path of NO\textsubscript{X} using D17O values of depositional nitrate.

We have collected wet deposition (precipitation) samples extensively in Japan (Figure 1). Except for the site in sub-tropical region (Minamitorishima), the D17O values of nitrate showed distinct seasonal variations. In summer, the reaction between NO\textsubscript{X} and OH is the dominant photochemical oxidation path for the production of nitrate. In contrast, the reaction of NO\textsubscript{X} with O\textsubscript{3} becomes relatively important in winter. In addition, we found that the annual average D17O values at Sado-Seki and Kosugi were larger than that at Rishiri located at high latitude (Figure 1). Generally, as the contributions of O\textsubscript{3} increase with latitude, the annual average D17O values become larger in higher latitude. The inverse latitudinal distributions of D17O value can be explained by regional differences in the photochemical reaction paths of NO\textsubscript{X}.

Keywords: triple oxygen isotope, photochemical reaction paths, nitrate

![Figure 1: Sampling locations and annual average D17O values](image-url)
Estimation of the reaction rate constant of ClO + HO2 to HOCl + O2 by SMILES observation

KURIBAYASHI, Kouta1*, SAGAWA, Hideo2, SATO, Tomohiro1, KASAI, YASUKO2

1Tokyo institute of Technology, 2NICT

HOCl play an important role in the ozone chemistry to link the odd ClOx and the odd HOx with the reaction,

ClO + HO2 to HOCl + O2 (1)

This is the only one reaction to produce HOCl in the middle atmosphere in the gas phase. This reaction is a key in the middle stratospheric ozone loss for the partitioning of the Cl atomic radical.

There are several laboratory studies to determine the reaction rate constant of (1). But these reaction rate constants have large discrepancies with large uncertainties as $k_{HOCl} = 3.3 \times 10^{-11} \exp(-850/T) + 4.5 \times 10^{-12}(T/300)^{-3.7}$ (Stimpfle et al, 1979) or $k_{HOCl} = (1.75 \pm 0.52) \times 10^{-12} \exp[(368 \pm 78)/T]$ (Hickson et al, 2007). Main reason for its uncertainty is that the chemical reaction of (1) is the reaction of ClO radical and HO2 radical. Therefore, in laboratory experiment for the calculation of this reaction rate constant, the generations of two radical is too difficult, and it is also difficult to extract only this reaction purely.

We have estimated the reaction rate constant of (1) from the atmospheric observation directly in the upper stratosphere/ lower mesosphere (US/LM) region by using a new super-sensitive remote sensing technology named Superconducting SubMillimeter-wave Limb Emission Sounder (SMILES) on the International Space Station (ISS)

We had estimate the reaction rate constant of (1) with the procedure as below.

1) We discovered that the time period when the reaction of (1) was purely happened is from one hour after sunset to one hour before sunrise.

2) From the time variations of ClO and HO2 of this time period, we calculated the reaction rate constant of (1). The estimated reaction rate constant is 8.9×10^{-12} [cm3 molecule$^{-1}$ s$^{-1}$] (20S-40S, 0.54hPa, 254.5K)

3) From this reaction rate constant and the time variations of ClO and HO2, we calculated the time variations of HOCl.

4) We checked the comparison between these calculated values and observed values. Our calculated values was in good agreement with the observed values.

5) We checked the comparison between our estimated reaction rate constants and the previous reaction rate constants. Our estimated reaction rate constant, $k_{HOCl} = 8.9 \times 10^{-12}$ (20S-40S, 0.54hPa, 254.5K), was between the reaction rate constant, $k_{HOCl} = 7.43 \times 10^{-12}$ (Hickson et al), and the reaction rate constant, $k_{HOCl} = 9.44 \times 10^{-12}$ (Stimpfle et al).

Keywords: SMILES, HOCl
Seasonal variations of greenhouse gases observed in the free-troposphere using a C-130H cargo aircraft

NIWA, Yousuke1, TSUBOI, Kazuhiro1, MATSUEDA, Hidekazu1, SAWA, Yousuke1, Masamichi Nakamura2, Daisuke Kuboike2, Kazuyuki Saito2, Hidehiro Ohmori2, Shohei Iwatsubo2, Hidehiro Nishi2, Yoshikazu Hanamiya2, Kentaro Tsuji2, Yusuke Baba2, MACHIDA, Toshinobu3

1Meteorological Research Institute, 2Japan Meteorological Agency, 3National Institute for Environmental Studies

Atmospheric measurements of greenhouse gases (GHGs) are conducted mostly at ground-based stations. Therefore, spatial and temporal variations of GHGs in the free-troposphere are not fully understood. Since February 2011, Japan Meteorological Agency has operated air flask sampling measurements of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and nitrous oxide (N2O) using a C-130H cargo aircraft in cooperation with the Ministry of Defense. The aircraft flies from Kanagawa to Minamitori-shima over the western North Pacific once a month, collecting about 20 and 4 air samples during cruising and descending sections respectively. The cruising altitude is about 6 km, where all the measurements represent free-tropospheric concentrations. It was well captured that the seasonal cycle of the observed CO2 concentration shows a maximum during April-May and a minimum in September. However, detailed seasonal patterns are apparently different in vertical from the surface to 6 km altitude. Especially, the steep vertical gradients of CO2 are prominent during winter and spring seasons. It was also found that high-concentration events of CO appeared in the mid free-troposphere during the spring season. These characteristic features strongly suggest a large impact of Asian continental outflow on the greenhouse gases distributions in the free-troposphere. By comparing three-dimensional simulation results with the aircraft measurements, the East Asian emissions and structures of the Asian continental outflow are examined.

Keywords: greenhouse gases, aircraft observation, free-troposphere
Latitude-time variations of atmospheric column-average dry air mole fractions of CO2, CH4 and N2O

SAITO, Ryu1*, PATRA, Prabir1, ISHIJIMA, Kentaro1

1JAMSTEC

We present a comparison of an atmospheric general circulation model (AGCM)-based chemistry-transport model (ACTM) simulation with total column measurements of CO2, CH4 and N2O from the Total Carbon Column Observing Network (TCCON). The model is able to capture observed trends, seasonal cycles and interhemispheric gradients at most sampled locations for all three species. The model-observation agreements are best for CO2, because the simulation uses fossil fuel inventories and an inverse model estimate of non-fossil fuel fluxes. The ACTM captures much of the observed seasonal variability in CO2 and N2O total columns (\textasciitilde81\% variance, $R>0.9$ between ACTM and TCCON for 19 out of 22 cases). These results suggest that the transport processes in troposphere and stratosphere are well represented in ACTM. Thus the poor correlation between simulated and observed CH4 total columns, particularly at tropical and extratropical sites, have been attributed to the uncertainties in surface emissions and loss by hydroxyl radicals. While the upward-looking total column measurements of CO2 contains surface flux signals at various spatial and temporal scales, the N2O measurements are strongly affected by the concentration variations in the upper troposphere and stratosphere.

Keywords: CO2, CH4, N2O, Atmospheric Transport Model, TCCON
Observations of atmospheric radiocarbon in carbon dioxide at Hateruma Island

TERAO, Yukio1*, MUKAI Hitoshi1, TOHJIMA, Yasunori1, MAKSYUTOV, Shamil1

1Center for Global Environmental Research, National Institute for Environmental Studies

We have been conducted monthly air samplings for measurements of atmospheric radiocarbon in carbon dioxide (14CO$_2$) at Hateruma Island (HAT, 24.05°N, 123.80°E, 47 m a.s.l.), Japan since 2004. We collected whole air samples using 2.5L glass flasks pressurized to 2.3 atm, and 5L air was used for radiocarbon analysis. The values of Delta14C were measured using Compact Accelerator Mass Spectrometry (CAMS, NEC 1.5SDH). Uncertainty in Delta14C measured by CAMS is less than 2 per mil, which is based on the number of 14C counts and the scatter of 14C/12C ratios during measurements. The reproducibility of CAMS measurements is +/-1.4 per mil (standard deviation of Delta14C values in a reference air cylinder). The Delta14C values of background maritime air observed at HAT clearly show the seasonal cycle (minimum in March and October and maximum in August) with amplitude of 10 per mil. The simulation using atmospheric transport model (NIES TM) indicates that fossil fuel CO$_2$ causes seasonal cycle of Delta14C.

In HAT we can measure polluted continental air from the East Asia in winter. To capture the high CO$_2$ events of Asian outflow, we installed remote-controlled autosampling system at HAT in 2010. For example, between March 7 and 11, 2010, we observed two events of CO$_2$ enhancement. The Delta14C values in the high CO$_2$ samples were significantly lower than the background level. The Delta14C observations indicate that fossil fuel CO$_2$ contributes 73-83% of CO$_2$ enhancement in the first event and 47-72% in the second event. The simulation suggests that biospheric emissions cause the other part of CO$_2$ enhances. The keeling plot of Delta14C shows the difference between two events clearly rather than that of delta13C, implying advantage of high precision Delta14C measurements for CO$_2$ source appointment.

Keywords: carbon cycle, carbon isotope measurements, Accelerator Mass Spectrometry, Asian outflow, source appointment, atmospheric transport
Interannual variations of the oceanic and the land biospheric CO2 uptake estimated based on atmospheric O2/N2 ratio

ISHIDOYA, Shigeyuki1*, MORIMOTO, Shinji2, AOKI, Shuji3, Shoichi Taguchi3, GOTO, Daisuke3, NAKAZAWA, Takakiyo3

1AIST, 2National Institute of Polar Research, 3Tohoku University

To investigate interannual variations of the oceanic and the terrestrial biospheric CO2 uptake within 10 years based on the observation of Atmospheric Potential Oxygen (APO = O2 + 1.1 x CO2), the APO observed at Ny-Alesund, the Arctic and Syowa, Antarctica for the period 2001-2009 are analyzed. The interannual variations of air-sea O2 flux due to a change of the ocean heat content is simulated using an atmospheric transport model with a global fields of the upper ocean heat content and a coefficient of air-sea O2 flux / heat flux. The observed and the simulated increase rates of APO are in phase, and the interannual variation of the estimated oceanic CO2 uptake using the corrected increase rate of APO for the variation of air-sea O2 flux is lower than +-0.6 GtC yr-1. This variation is comparable to those reported by previous studies using an atmospheric inversion or ocean biogeochemical model. It is also suggested that the land biosphere emits CO2 to the atmosphere around El Nino event in 2002-2003, as well as the oceanic CO2 uptake is relatively smaller around La Nina event than that around El Nino event. The average oceanic CO2 uptake is estimated to be 2.9+-0.8 GtC yr-1 for the period 2001-2009, and the terrestrial biospheric CO2 uptake for the period 2004-2009, i.e. excluding its drop-off around 2002-2003, is estimated to be 1.7+-0.9 GtC yr-1.

Keywords: Atmospheric O2/N2 ratio, Atmospheric Potential Oxygen, Interannual variation of anthropogenic CO2 budget, Ocean heat content, Air-sea O2 flux
Comparison of CO2 vertical profiles measured by balloon-borne instrument measurements with aircraft measurements

OHUCHI, Mai1*, MATSUMI, Yutaka1, NAKAYAMA, Tomoki1, MACHIDA, Toshinobu2, MATSUEDA, Hidekazu3, SAWA, Yousuke5, Tomoaki Tanaka4, Isamu Morino2, Osamu Uchino2

1Nagoya University Solar-Terrestrial Environment Laboratory, 2National Institute for Environmental Studies, 3Geochemical Research Department, Meteorological Research Institute, 4Japan Aerospace Exploration Agency

The atmospheric CO2 concentration has drastically increased since the Industrial Revolution due to the mass consumption of fossil fuels and natural gas by human activities. CO2 is considered to be a major factor of global warming; therefore it is very important to measure CO2 correctly. Current CO2 monitoring sites are limited and there are not many CO2 vertical profile measurements.

We are developing balloon-borne instruments which can measure the vertical distribution of CO2 in any place in the world under any kind of weather conditions. The objective is to contribute to raise the precision of climate change prediction by utilizing the balloon-borne instruments all over the world like ozone sonde instruments.

We will present comparisons of balloon-borne instrument results and aircraft measurement results in order to validate the balloon-borne instruments precision.

We used two types of aircraft data for the comparison analyses, one is CONTRAIL(Comprehensive Observation Network for Trace gases by AirLiner) data of passenger aircraft CO2 measurements and the other is the data obtained by aircraft measurements performed by JAXA and NIES for validation of the GOSAT satellite.

Firstly, we compared the data obtained on 7 January 2011 using the balloon-borne instruments at three sites (Isezaki, Ichihara, and Shirako) with the CONTAIL data. Secondly, we compared two data obtained on 31 January and on 3 February 2011 using the balloon-borne instruments at Moriya with the JAXA/NIES aircraft measurements at Tsukuba.

Keywords: carbon dioxide, balloon-borne measurement, aircraft
Evolution of HCl and HF above Rikubetsu observed with FTIR between 1995 and 2009

NAGAHAMA, Yoshihiro¹*, Hideaki Nakajima¹, Tomoo Nagahama²

¹National Inst. for Environ. Studies, ²STE Lab., Nagoya University

FTIR (Fourier transform infrared spectrometer) was installed at Rikubetsu (43.5 N, 143.8 E, 370 m a.s.l) located in the northern mid-latitude and infrared solar spectra have been obtained with FTIR since 1995. FTIR enables us to observe several trace gases such as O₃, HF, HCl, and HNO₃ at the same time.

HCl is a reservoir of ozone-depleting substance, chlorine(Cl), and HF is a reservoir of fluorine(F). They are included in the CFCs. Some reports said ozone depletion has slowed down or stopped due to the regulation of emission of CFCs thanks to the Montreal Protocol. To project the variation of ozone in the future, it is important to observe variations of HF and HCl. In addition, it becomes possible to monitor the situation of CFCs emissions. We here report the analytic results for the evolution of total column amounts of HCl and HF.

We used Bruker’s IFS-120M FTIR for measurements, and SFIT2 program developed by NIWA, NCAR and Univ. of Wollongong for spectral analysis to deduce column amounts.

We analyzed the data for the period between May 1995 and December 2009.

We also compared our results with the ones at Jungfraujoch (46.5 N, 8.0 E, 3580 m a.s.l) for the evaluation of total column amounts. Jungfraujoch is also located in the northern mid-latitude and has long-term data derived from FTIR.

We show the evolution of annual average column amounts of HCl and HF in the figure. It is shown that HCl started to decrease after the peak at around 1995. We don’t understand the reason for a tentative large decrease in 1999.

It looks like HF peaked at around 2003, and started to decrease afterwards.

Keywords: stratosphere, trace gases, FTIR, midlatitude
Ozone loss rates and PSC occurrence in the Arctic winter stratosphere during 1994-2000 observed by POAM II/III and ILAS

TERAO, Yukio1*, SUGITA, Takafumi1, SASANO, Yasuhiro1

1Center for Global Environmental Research, National Institute for Environmental Studies

Quantitative chemical ozone loss rates at the 475 K isentropic surface inside the Arctic polar vortex are evaluated for six winters (January through March) using a satellite-based Match technique. Satellite observational data are taken from the Polar Ozone and Aerosol Measurement (POAM) II for 1994-1996, the Improved Limb Atmospheric Spectrometer (ILAS) for 1997, and the POAM III for 1999-2000. The largest ozone loss rates occurred in January 1995 (50 ppbv/day), February 1996 (40-50 ppbv/day), February 1997 (40 ppbv/day), January 2000 (60 ppbv/day), and early March 2000 (40 ppbv/day). Large derived ozone loss rates were typically associated with air masses that experienced low temperatures (187-195 K) within the previous 10 days. The ozone loss rates clearly increase with decreasing the minimum temperature. The particularly large ozone losses of 9+/-3 ppbv/sunlit-hour in February 1996 and January 2000 were associated with very low minimum temperatures of 187-189 K, simultaneously with high PSC probabilities.

We have quantified the probability of polar stratospheric cloud (PSC) existence at the 475 K level using aerosol extinction coefficient (AEC) data from POAM II/III and ILAS. The results show that patterns of high PSC probabilities are very similar to those of high ozone loss rates. The highest positive correlations between monthly PSC probabilities and ozone loss rates per sunlit hour occurred in February ($r^2=0.88$) and January ($r^2=0.64$). No correlation is found for March; however, this lack of correlation is solely due to small ozone loss rates in 1996. A correlation is found for March when considering only 1995, 1997, and 2000 ($r^2=0.91$). This relationship demonstrates that interannual variability (IAV) in the magnitude of ozone losses is tied to IAV in PSC probabilities. The regression coefficient between the PSC probabilities and ozone loss rates per sunlit hour was almost constant throughout JFM, however, for ozone loss rates per day, the seasonal increase from January to February/March in the regression coefficient was found due to more sunlight in late winter to spring. Regression analysis for the full JFM season indicates that, on average, an absolute increase of 10% in the PSC probability contributes an additional ozone loss of approximately 25+/−6 ppbv/day or 3.2+/−0.7 ppbv/sunlit-hour. Relationships between average Arctic winter ozone loss rates and various PSC- and temperature-related indices are investigated, including the area of polar vortex that is colder than the threshold temperature for PSC existence (APSC; e.g., Rex et al., 2004), the PSC formation potential (PFP), and the potential for activation of chlorine (PACl) (Tilmes et al., 2008). Of these three, PACl provides the best proxy representation of interannual variability in Arctic ozone loss at the 475 K level.

We used HALOE H$_2$O and POAM/ILAS AEC to calculate the IAV in the threshold temperature for activation of chlorine (TACl; Drdla and Mueller, 2010). TACl decreased from 194.6+/−0.6 K during the winter of 1994 to 193.3+/−0.8 K during the winter of 2000. This decrease is associated with reductions in background sulfate aerosols. The decrease is interrupted in 1997 and 1998, when weak diabatic descent inside the vortex led to higher SAD, which in turn led to higher TACl. The low value of TACl in 1996 (193.6+/−0.9 K) caused the decrease in PACl, which significantly contributed to the higher correlation between ozone loss and PACl rather than PFP. Our observational evidence shows the high correlation between Arctic ozone loss and TACl/PACl, as well as Tilmes et al. (2008). The injection of sulfate aerosols into the stratosphere either by huge volcanic eruptions or by “geoengineering” schemes to counteract global warming would lead to increases in TACl, probably resulting in enhanced ozone loss in the Arctic winter stratosphere.

Keywords: stratospheric photochemistry, polar stratospheric cloud, satellite measurement, polar vortex, stratospheric temperature
The effect of the surface BRDF on the measurement of tropospheric NO2 from a geostationary orbit and ISS

NOGUCHI, Katsuyuki1*, Andreas Richter2, John P. Burrows2, IRIE, Hitoshi3, KITA, Kazuyuki4

1Nara Women’s University, 2University of Bremen, 3JAMSTEC, 4Ibaraki University

BRDF (Bidirectional Reflectance Distribution Function) is the dependency of the surface reflectance on incident and output directions. Zhou et al. [2010] showed that the surface BRDF affects the retrieval of the tropospheric NO2 column density with sun-synchronous low Earth orbit (LEO) satellites, as line-of-sight angles largely change in the sun-synchronous LEO measurements. In the present study, we have estimated the influence of BRDF on the tropospheric NO2 DOAS retrieval supposing the observations of air pollution over Tokyo from a geostationary orbit (GEO) and ISS. In the analysis, we used the results of actual surface measurements: the MODIS BRDF product released by NASA. The result showed that the use of the assumption of Lambertian surface instead of BRDF would cause up to a 30% difference in the reflectance value. We also show the influence of such a difference on the tropospheric NO2 column density measurements.

Keywords: Geostationary orbit, ISS, tropospheric chemistry, NO2, BRDF
First quantitative bias estimates for tropospheric NO2 columns retrieved from SCIAMACHY, OMI, and GOME-2 using a common

IRIE, Hitoshi¹, Folkert Boersma², KANAYA, Yugo¹, TAKASHIMA, Hisahiro¹, Xiaole Pan¹, Zifa Wang³

¹JAMSTEC, ²KNMI, ³LAPC/IAP/CAS

For the intercomparison of three different satellite sensors (SCIAMACHY, OMI, and GOME-2) currently observing global distributions of nitrogen dioxide (NO₂) vertical column densities (VCDs) in the troposphere, we use a common standard to quantify the biases for the respective data sets. As the standard, a regression analysis using a single set of collocated Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations at several sites in Japan and China in 2006-2010 is adopted. Examination of various coincidence criteria suggests that the slope of the regression line is biased when the distance between the MAX-DOAS and satellite observation points exceeds the satellite measurement pixel size. Using strict coincidence criteria we estimate biases in SCIAMACHY, OMI, and GOME-2 data (TM4NO2A and DOMINO version 1 products, with cloud fractions smaller than 10%) to be -19%, +6%, and +20%, respectively, compared to the MAX-DOAS data. The recently released new satellite products, version 2, show better agreement, with biases of -5%, -4%, and +9%, respectively. The estimates will enable analyses combining these satellite data for air quality studies that are more systematic and quantitative than possible previously.

Keywords: NO2, satellite data validation, MAX-DOAS
An attempt to profile the vertical distributions of trace gases and aerosol particles in the surface layer

Takahashi, Kenshi1*, Yabuki, Masanori1, Chikara Miyawaki1, Makoto Matsuda1, Tsuda, Toshitaka1, Nakayama, Tomoki2, Kazuma Aoki3, Taiichi Hayashi4, Masataka Shiobara5

1RISH, Kyoto University, 2STEL, Nagoya University, 3Dept. Earth Science, Toyama University, 4DPRI, Kyoto University, 5NIPR

Dispersion and transport processes of gaseous molecules and aerosol particles that are emitted near the surface are strongly influenced by meteorological conditions within the surface layer. For instance, during daytime positive buoyancy flux at the surface creates a thermal instability and thus generates additional or even major turbulence, which may result in an effective vertical mixing of trace gases and aerosol, whereas during nighttime negative buoyancy inhibits turbulent mixing, thus vertical transport is slower at night than during the day. Most of the available observational studies of atmospheric trace constituents are ground-based campaigns which will not be adequate to reveal their spatiotemporal variations near the surface layer. Airborne-based campaigns are powerful approach to examine the spatiotemporal variations of atmospheric trace constituents in the free troposphere, but will be inadequate to expand the assessing heights into the surface boundary layer because of minimum safe altitude. We want to overcome the shortcomings posed by the poor understanding of the influence of vertical mixing near the surface, and the lack of altitude resolved measurements of the chemical composition in the surface boundary layer. We are developing a new methodology to reveal the vertical distributions of trace gases and aerosol particles and to investigate their variations with the meteorological parameters. In this presentation, we introduce the preliminary results from the simultaneous measurements using lidar, sodar and tethered balloon profiling, which were conducted at Kyoto University Middle and Upper Radar site (34.9 N, 136.1 E) in Shiga Prefecture, Japan, during the summer of 2011.

Keywords: aerosol, trace gases, surface layer, tethered balloon, vertical distributions
Measurements of particle effective density distributions during summer in Nagoya: Relationship with chemical composition

SAWADA, Yuki1∗, NAKAYAMA, Tomoki1, SETOGUCHI, Yoshitaka2, IKEDA, Yuka1, KAWANA, Kaori2, MOCHIDA, Michihiro2, MATSUMI, Yutaka1

1Solar-Terrestrial Environment Laboratory, Nagoya University, 2Graduate School of Environmental Studies, Nagoya University

Tropospheric aerosols are known to be a complex mixture including mineral dust, inorganic salts, organic compounds, and soot particles. Mixing state and shape of aerosols are strongly affects optical properties. However, real-time (bulk) measurements of mixing state and shape of ambient aerosols are limited. Measurements of 'effective' density distribution have a potential to provide useful information about the mixing state and shape. In this work, based on aerosol density distribution measurements, the mixing state and shape of aerosols in an urban area are estimated.

Simultaneous observations of aerosol density distributions and chemical properties were conducted on August, 16-26, 2011 at the Higashiyama-campus of Nagoya University. The effective density of ambient particle with a mobility diameter of 100 and 200 nm was measured by combinations of a differential mobility analyzer (DMA, TSI, model 3081), an aerosol particle mass analyzer (APM, Kanomax, model 3601), and a condensation particle counter (CPC, TSI, model 3776). Chemical compositions of the aerosol were measured by a time-of-flight aerosol mass spectrometer (Aerodyne, HR-ToF-AMS). The density distributions and chemical compositions were measured after passing through diffusion dryers and one of the heaters controlled at 25, 100, and 300 degree-C by switching ball valves every 30 min.

As a result, ambient aerosols with a diameter of 100 nm have two distinct density peaks at 0.7-0.9 (peak 1) and 1.2-1.6 (peak 2) g/cm³. The changes in peak areas after heating imply that peak 1 and 2 mainly consist of soot and volatile compounds (such as inorganic salts and organics), respectively. In the presentation, the temporal variations of the effective densities and their relationship with chemical properties will be discussed.

Keywords: Aerosol density distributions, Ambient measurements, Aerosol chemical compositions, Mixing states
Measurements of optical properties of aerosols in Nagoya: Contributions of lensing effect and brown carbon

IKEDA, Yuka1,∗, NAKAYAMA, Tomoki1, SETOGUCHI, Yoshitaka2, SAWADA, Yuki1, KAWANA, Kaori2, MOCHIDA, Michihiro2, MATSUMI, Yutaka1

1Solar-Terrestrial Environment Laboratory, Nagoya University, 2Graduate School of Environmental Studies, Nagoya University

Aerosol particles have an important role in radiation balance in the atmosphere by scattering and absorbing incident light. Black carbon (BC) particles are an important global warming agent with radiation forcing similar in magnitude to CO2. The light absorption of BC is generally considered to be increased by internal mixing with other compounds but the amount of absorption enhancement depends on factors such as refractive index of BC and coating materials, size and location of the BC core. In addition, recently light-absorbing organic carbon 'brown carbon', involving humic-like substance (HULIS), organonitrate, and nitro-aromatics etc., has been proposed as a source of significant absorption, particularly in the near-UV. However, observational studies of the enhancement of BC light absorption and brown carbon are still limited mainly because of the difficulty in the accurate measurement of light absorption of internally mixed BC particles without collecting on filter. In this work, by applying photoacoustic spectroscopy, light absorption enhancement of BC and contributions of light absorption by brown carbon is examined.

Simultaneous observations of optical and chemical properties as well as size and density distributions of ambient aerosols were conducted on August, 16-26, 2011 at the Higashiyama-campus of Nagoya University. Optical properties of PM1 particles were measured using the PASS-3 (DMT, PASS-3, absorption and scattering at 405 and 781 nm). Chemical compositions of the aerosol were measured by a time-of-flight aerosol mass spectrometer (Aerodyne, HR-ToF-AMS). The optical properties and chemical composition were measured after passing through diffusion dryers and one of the heaters controlled at 25, 100, and 300 degree-C by switching ball valves every 30 min. Mass concentrations of elemental carbon (EC) and Organic carbon (OC) were also measured by thermo-optical technique using a semi-continuous EC/OC analyzer (Sunset Lab., model 4) every 90 min.

By comparing absorption coefficients at 781 nm with and without heating (300 degree-C), increase in BC light absorption due to coating is estimated to be 20-30%. Relatively higher amplification factors are observed during the period when large SO4/Org ratio is observed. Contributions of light absorption by OC are estimated by assuming that the enhancement of BC light absorption due to coating does not depend on wavelength. As a results, contributions of 405 nm light absorption by OC, which is vaporized at 300 degree-C, are found to be small, at least, during summer in Nagoya (<5%).

Keywords: Aerosol optical properties, Ambient measurement, Lensing effect, Brown carbon, Photoacoustic spectroscopy
Hygroscopicity of aerosol particles and CCN activity of less hygroscopic aerosol particles observed in Nagoya in summer

OGAWA, Shuhei1*, Yoshitaka Setoguchi1, Kaori Kawana1, Tomoki Nakayama2, Yuka Ikeda2, Yuki Sawada2, Yutaka Matsumi2, Michihiro Mochida1

1Graduate School of Environmental Studies, Nagoya University, 2Solar-Terrestrial Environment Laboratory, Nagoya University

Hygroscopic property of atmospheric aerosol particles closely relates to the cloud condensation nuclei (CCN) activity. Thus, a detailed understanding of this property is important for the assessment of the effect of aerosols on climate. In the urban atmosphere, aerosol particles could be externally mixed in view of hygroscopicity by the emissions of hydrophobic particles (primary organics and black carbon) and the inflow and in-situ formation of hydrophilic particles. The hygroscopicity of aerosol particles and the mixing state may change by the condensation of secondary components on both hydrophobic and hydrophilic particles, especially in summer. Mochida et al., (2008) measured the hygroscopic growth factor (HGF) of aerosol particles and examined the correlation between the mass concentrations of chemical species and the particle number concentrations in specific HGF ranges in Tokyo. They reported that the particle hygroscopicity changed rapidly by the secondary formation of organics. In this study, we also analyzed the correlations between the number concentrations of aerosol particles in specific HGF ranges and the mass concentrations of chemical species. In addition, we analyzed the fraction of CCN for less hygroscopic particles and assessed the diurnal variations.

Atmospheric aerosol measurements were performed in August 2011 in Higashiyama campus, Nagoya University, and the data in the period from 16 to 25 August were used for the analysis. The sampled aerosol was classified according to the differences in particle HGF at 85% relative humidity, using the hygroscopicity tandem differential mobility analyzer (HTDMA). The CCN fraction of the aerosol particles selected using the HTDMA were measured in combination with a cloud condensation nuclei counter (CCNC). The HGF distributions of aerosol particles with the dry mobility diameter of 150 nm were observed every 6 hours. The CCN fraction of particles with HGF of unity was measured under 1% supersaturation (SS) condition every 1.5 to 4.5 hours and under 0.5% SS condition every 6 hours. The CCN fraction of particles with HGF of 1.1 was measured at 1% SS every 6 hours.

The HGF distributions in the observation period were bimodal. In 23 August, more hygroscopic particles accounted for a large fraction of 150 nm particles. One possible reason is that air masses with sulfate aerosol formed in the plume from Saku-rajima were transported to Nagoya without large influences from other urban areas from which less hygroscopic particles were supplied. Correlations between the number concentrations of particles in specific HGF ranges and the mass concentrations of chemical species were found, being similar to the study by Mochida et al., (2008). In our study, however, the correlation between moderately hygroscopic particles and ozone was weak. It is possible that oxygenated organics were not formed locally, but were transported mainly from outside the Nagoya metropolitan area in the first three days. The number fraction of CCN in less hygroscopic aerosol (HGF = 1) varied greatly with time, suggesting the changes in the amount of hydrophilic components in the particles with apparent HGF of unity during the observation period.

Reference

Keywords: urban aerosol, cloud condensation nuclei, HTDMA, hygroscopic growth
REE pattern of aerosol collected in Tokorozawa city, Japan.

HONDA, Masatoshi \(^1\) \(^*\)

\(^1\)NETI

In this study, REE (Rare Earth Elements) patterns of aerosol samples which were collected in Tokorozawa city, Japan are examined. La/Sm is traditionally used as an index of aerosols originated from oil burning (Hikoi et al., 2009). Recently, many products including parts made by REE spread. There is possibility that the other REEs can be new indices of human activities.

Keywords: aerosol, rare earth elements, lanthanoid
New particle formation and growth observed at a forest site in Wakayama, Japan

HAN, Yuemi1*, IWAMOTO, Yoko1, NAKAYAMA, Tomoki2, KAWAMURA, Kimitaka3, Tareq Hussein4, MOCHIDA, Michihiro1

1Graduate School of Environmental Studies, Nagoya University, 2Solar-Terrestrial Environment Laboratory, Nagoya University, 3Institute of Low Temperature Science, Hokkaido University, 4Department of Physics, The University of Jordan

The oxidation products of biogenic volatile organic compounds (VOCs) from terrestrial vegetation contribute to both the mass and number concentrations of atmospheric aerosol particles. These aerosol particles may affect the Earth’s climate through acting as cloud condensation nuclei (CCN) and modifying cloud droplet properties. Characterization of biogenic aerosols remains as an important research subject, especially in the regions where they are rarely investigated. We report the aerosol properties, including those during the new particle formation (NPF) events, observed at a forest site in Wakayama, Japan. The potential significance and the influence of NPF over the studied area are discussed.

The number size distributions of aerosol particles (from 14 to 710 nm) were measured using a scanning mobility particle sizer (SMPS) at the forest site in Wakayama, Japan (34.07 degrees N, 135.52 degrees E), in summer 2010. Aerosol particles with diameters no large than 0.95 micron were collected on quartz fiber filters, and were subjected to the chemical analysis of ionic species, organic carbon (OC), and elemental carbon (EC). The maritime air mass condition days in the years from 2006 to 2010 were identified from the daily backward air mass trajectories, which were computed using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT4) Model. The precipitation rates around the forest area were calculated for the maritime air mass condition days in August of 2006 to 2010.

NPF was observed in four days during the studied period. The NPF events were characterized by large increases in the number concentrations of sub-30 nm particles and their growth for several hours. These events occurred preferentially under the conditions of low vapor condensation sink and less pre-existing particles. The calculated growth rates of 14 to 30 nm particles on the four NPF event days were from 5.0 to 15.7 nm/h. The mass fraction of OC on the NPF event days (on average 43.4% of the sum of ionic species, OC, and EC) was relatively high, which is in contrast to that on non-event days (on average 24.6%). The biogenic aerosol originated from forest vegetation presumably contributed to the relatively high OC fraction. The trajectory analysis shows that the clean maritime air masses arrived at the studied area on the NPF event days. According to the classification of trajectories, the maritime air mass conditions occurred on 10% to 16% of days for the individual year of 2006 to 2010. If new aerosol particles formed under the maritime air mass conditions as observed during this intensive campaign, the NPF may not be a rare phenomenon around the studied forest area. The large increases in the number concentrations of >90 nm particles and the enhanced precipitation rates in the afternoons of NPF event days further suggest that newly-formed particles grow up to involve in the convective cloud formation and precipitation over the region.

Keywords: biogenic aerosol, growth rates, maritime air
Closure study on concentration of cloud condensation nuclei at the summit of Mt. Fuji

HASEGAWA, Tomoko1*, MIURA, Kazuhiko1

1Tokyo University of Science

1. Introduction
According to the report on radiative forcing of IPCC (2007), the impact of aerosol on cloud and the corresponding feedbacks of cloud are currently considered as the largest uncertainty in climate system. Therefore, it is necessary to measure cloud condensation nuclei (CCN) in various areas. In recent studies, the parameterization of contributing to CCN activity, such size and chemical composition or hygroscopicity of aerosol particles, is often carried out for applying Global Climate Model. In this study, we measured CCN number concentration at the summit of Mt. Fuji and carried out CCN closure study. CCN closure study is referred to compare calculation of CCN number concentration (N_{ccn}^{cal}) from these parameters with direct measurement (N_{ccn}) by k-Kohler theory (Petters and Kreidenweis, 2007) to investigate most contributing to CCN activity. Ultimately, our purpose is to find parameters or models which can estimate CCN concentration without actually measuring that.

The summit of Mt. Fuji (3776m a.s.l.) is almost located in free troposphere and affected little local pollution. Therefore it is expected to be measured background atmosphere and long-range transport of pollutant from the Continent. The example of CCN observation in free troposphere is a few, so CCN observation at the summit of Mt. Fuji is invaluable.

2. Method
This observation is done at the Mt. Fuji Weather Station from 14 July 2011 to 25 Aug. 2011. We used SMPS (Scanning Mobility Particle Sizer; TSI Inc., Model 3936N75), OPC (Optical Particle Counter; RION Inc., KR12A) and CCNC (Cloud Condensation Nuclei Counter; DMT Inc., CCN-100) as measuring instrument. We continuously measured dry particle number concentration and size distribution through diffusion dryer by SMPS and OPC, and CCN concentration with six different super-saturation (SS) conditions (SS=0.10, 0.19, 0.27, 0.36, 0.44, 0.52%) by CCNC.

3. Results and Discussion
N_{ccn}^{cal} was calculated in two ways and compared with N_{ccn} measured by CCNC. One method is to utilize averaged particle size distribution and real-time measurement of hygroscopicity (k) or chemical composition (Method 1), the other is to utilize real-time particle size distribution and averaged k (0.13 at 0.1% and 0.28 at 0.52%; Method 2). As a result, the relative deviation (\%=|N_{ccn}^{cal}-N_{ccn}|/N_{ccn}) between N_{ccn} and N_{ccn}^{cal} in Method1 was larger than that in Method2. Therefore, it can be seen that the particle size distribution affect CCN activity more than particle hygroscopicity at the summit of Mt. Fuji.

During this measurement period 2011, CCN concentration when the summit of Mt. Fuji was located in free troposphere (FT) is about twice larger than that in the time of others. This result is opposite to that of observations at Jungefraujoch (Juranyi et al., 2010). Also, geometric mean diameter in FT was larger, and continental air exceeded in this time. Consequently, particles were grown by long-range transport from the Continent, and CCN concentration increased because CCN activity is more affected by the particle size distribution than the particle chemical composition.

We will consider whether CCN concentration at the summit of Mt. Fuji is estimated as well as other regions by k-Kohler theory and how much contribution to CCN concentration particle chemical composition has even though the particle size distribution mainly affects CCN activity.

References

Acknowledgements
This study was done in the term when nonprofit organization ‘Valid Utilization of Mt. Fuji Weather Station’ had received a part of the Mt. Fuji Weather Station from the Japan Meteorological Agency and managed.

Keywords: cloud condensation nuclei, CCN, Mt. Fuji, free troposphere, closure study, k-Kohler theory
Decrease of hygroscopicity of oxalic acid by the formation of metal-oxalate complex

TAKAHASHI, Yoshio1,*, Takema Furukawa1

1Hiroshima University

Atmospheric aerosols have both a direct and an indirect cooling effect that influences the radiative balance at the Earth’s surface. It has been estimated that the degree of cooling is large enough to cancel the warming effect of carbon dioxide. Among the cooling factors, secondary organic aerosols (SOA) play a key role in the solar radiation balance in the troposphere as SOA can act as cloud condensation nuclei (CCN) and extend the lifespan of clouds because of their high hygroscopic and water soluble nature. Oxalic acid is one of the major components of SOA, and is produced via several formation pathways in the atmosphere. However, it is not certain whether oxalic acid exists as free oxalic acid or as metal oxalate complexes in aerosols, although there is a marked difference in their solubility in water and their hygroscopicity. We employed X-ray absorption fine structure spectroscopy to characterize the calcium (Ca) and zinc (Zn) in aerosols collected at Tsukuba in Japan with fractionation based on particle size using an impactor aerosol sampler. It was shown that 10\%–60\% and 20\%–100\% of the total Ca and Zn in the finer particles (< 2.1 micrometer) were present as Ca- and Zn-oxalate complexes, respectively. Oxalic acid can act as CCN because of its hygroscopic properties, while Ca oxalate (metal oxalate) complexes are not hygroscopic, and so cannot be CCN. Based on the concentration of noncomplexed and metal-complexed oxalate species, we found that most of the oxalic acid is present as metal oxalate complexes in the aerosols, suggesting that oxalic acid does not act as CCN in the atmosphere. Similar results are expected for other dicarboxylic acids, such as malonic and succinic acids. Thus, it is possible that the cooling effect of organic aerosols assumed in various climate modeling studies is overestimated because of the lack of information on metal oxalate complexes in aerosols.

Keywords: oxalic acid, metal complex formation, XAFS, hygroscopicity
AMS and LC/MS analyses of SOA from the photooxidation of aromatic hydrocarbons: chemical structure and aging rate

SATO, Kei1*, TAKAMI, Akinori1, HIKIDA, Toshihide2, SHIMONO, Akio2, IMAMURA, Takashi1

1NIES, 2Shoreline Science Research Inc.

Oxygenated organic aerosol (OOA) observed in remote areas is believed to be aged secondary organic aerosol (SOA); however, the reaction processes relevant to SOA aging remain unclear. Recently, we measured mass spectra of SOA formed from the photooxidation of aromatic hydrocarbons using an Aerodyne aerosol mass spectrometer (AMS), and suggested that SOA aging delayed with increasing the number of alkyl groups involved in a precursor aromatic molecule. In this study, we selected benzene and 1,3,5-trimethylbenzene (TMB) as the SOA precursor to analyze SOA formed from the photooxidation chamber experiments in the presence of NOx using a high-resolution time-of-flight AMS (H-ToF-AMS) and a liquid chromatograph/time-of-flight mass spectrometer (LC/TOF-MS). A van Krevelen diagram was studied using the O:C and H:C ratios obtained by H-ToF-AMS for SOA. The results showed that organics present in SOA are rich in carboxylic acids or hydroxy carbonyls, and the O:C ratio of SOA formed by the reaction of 1,3,5-TMB is lower than benzene. Analytical results of LC/TOF-MS showed that particulate products formed by the reaction of 1,3,5-TMB are rich in ketocarboxylic acids. These results indicated that SOA aging proceed mainly by formation of carboxylic acids, and the rate of SOA aging in laboratory chambers is limited by the oxidation of ketone groups. Aging of SOA formed by laboratory chamber experiments is delayed compared with ambient OOA; this is because, the experimental duration is insufficient, or conventional laboratory chamber experiments cannot simulate the ketocarboxylic acid oxidation known to proceed in the aqueous phase. Further, it was newly suggested that the ratio of particulate nitrophenols formed by the reaction of 1,3,5-TMB to total SOA mass is lower than benzene.

Keywords: aromatic hydrocarbons, secondary organic aerosol, aerosol aging, photochemical smog chamber, liquid chromatography-mass spectrometry, aerosol mass spectrometry
Atmospheric aerosols in wet seasons at Phimai, Thailand—Long range transport of soil dusts from west Asia

TSURUTA, Haruo1∗, OIKAWA eiji1, INOUE toshiro1, CHOTPITAYASUNON Jinchula2, THANA boossarasiri2, TAKAMURA tamio1, TAKEMURA toshihiko4, GOTO daisuke1, SUGIMOTO nobuo5, SUDO shigeto6, YONEMURA seiichiro6, SERA koichiro7, HAYASAKA tadahiro8, NAKAJIMA teruyuki1

1AORI, University of Tokyo, 2Chulalongkorn University, 3CEReS, Chiba University, 4RIAM, Kyushu University, 5National Institute for Environmental Studies, 6National Institute for Agro-Environmental Sciences, 7Cyclotron Center, Iwate Medical University, 8CAOS, Tohoku University

According to the analysis of the field study on atmospheric aerosols measured at Phimai, Thailand, dust particles were transported from East China and Indochina, in the early- and the late-dry season, respectively. In contrast, the dust concentration in wet season was usually low compared with that in the dry season, while high concentration of dust was measured even in the wet season, comparable to that in the dry season due to transport of the edge of dust storms in East Asia. The purpose of this study is to clarify if the high dust particles were caused by the local sources or by long range transport. The case study on the episode of high dust concentration during 17-20 June 2008 was made, by comparing the surface data with CALIOP data (http://www-calipso.larc.nasa.gov/data/BROWSE/production/V3-01/), NIES RIDAR data(http://www-lidar.nies.go.jp/Phimai/archives/), and the result of the SPRINTARS model(http://sprintars.riam.kyushu-u.ac.jp/archivej.html). The CALIOP data showed that high dusts were measured during 14-20 June 2008, from Saudi Arabia to Somalia, from Pakistan to Arabian Sea, from Bangladesh to the Bay of Bengal, and the maximum vertical height of the dust layer reached up to 7 km. According to the RIDAR data, high dust aerosols were observed up to the height of 2-3km during 15-17 June 2008 (missing data from 18 June). Furthermore, the backward trajectory analysis by NOAA HYSPLIT MODEL (http://www.arl.noaa.gov/ready/hysplit4.html) showed that the air masses arrived at Phimai on 17-20 June 2008, was transported a few days after in the lower troposphere from over the Bay of Bengal, and in the layer of 2-4km height one week after from the east coast of north Africa. On the other hand, the SPRINTARS model, a high dust layer existed up to the height of 2-3km at least for a week from 14 June 2008, spreading horizontally from the eastern part of North Africa to the Bay of Bengal through west Asia, India, and the edge of the large-scale dust storm reached Indochina. All these data strongly suggest that the high dust particles at Phimai in the wet season could be caused by the long range transport of dust generated in the desert areas of west Asia, in addition to the local dust.

Keywords: atmospheric aerosols, soil dusts, long range transport, CALIOP, west Asia
Measurements of atmospheric mercury concentration at remote islands, western Japan

MIYAKE, Takayuki1*, NAGAFUCHI, Osamu1, Tomonori Kawakami2, Takemitsu Arakaki3, Atsushi Takashima4, Kenshi Tetsuka5

1School of Environmental Science, The University of Shiga Prefecture, 2Faculty of Engineering, Toyama Prefectural University, 3Faculty of Science, University of the Ryukyus, 4Faculty of Agriculture, University of the Ryukyus, 5Yattane Goyo Research Group

Asia continent contributed about 50% of the global anthropogenic mercury (Hg) emissions, while China alone contributed about 30%. Therefore, much amounts of Hg are estimated to transport and deposit to Japan in the lee of East Asia. UN Environmental Program (UNEP) required to reduce Hg emissions into environments and its health risk. Therefore, the global partnership was established by six countries including Japan in 2006 in order to encourage atmospheric Hg study at remote areas including high mountainous and polar ones and on long-range transport in the atmosphere. However, atmospheric Hg monitoring and deposition is not studied at all on remote areas of high mountains and islands in Japan. In the present study, we report to monitor atmospheric Hg and related pollutants at the remote islands (Tsushima, Yakushima and Okinawa Islands), western Japan in order to reveal atmospheric Hg variations and acquire observational data to depositional and transport model.

We began to continuously determine atmospheric Hg with using mercury monitors (Mercury Instruments Inc., UT3000) at the Korea viewpoint in northern Tsushima Island and Isso Junior High School in northern Yakushima Island since 2011. We also determined atmospheric Hg with using gold beads into quartz tubes on an active sampler without commercial electric power at near the summit of Mt. Fuenchidi, northern Okinawa Island. We have determined atmospheric ozone and sulfur dioxide with using ozone monitors and sulfur dioxide monitors at Tsushima and Yakushima Islands, too. Atmospheric Hg concentrations ranged from 0.1 to 1.5 ng m\(^{-3}\), which were the same level or less than background level, at these sites. There was showed no diurnal variations, and sometimes spike-like high concentrations more than 1 ng m\(^{-3}\).

We will also present atmospheric ozone and sulfur dioxide concentrations and variations at the islands with atmospheric mercury concentrations.

Keywords: atmospheric mercury, remote islands, Tsushima Island, Yakushima Island, Okinawa Island
Temporal variations of the vertical profiles of CH$_4$ at Tsukuba observed with a Fourier transform spectrometer

MURATA, Isao1, NAKAJIMA, Hideaki2, Isamu Morino2

1Graduate School of Environmental Studies, Tohoku University, 2National Institute for Environmental Studies

Fourier transform spectrometer (FTS) has advantages in its high resolution and the wide wavenumber range. Vertical profiles of some species can be derived from the high-resolution spectra. The vertical profiles and column densities of CH$_4$ were retrieved from the solar spectra observed at Tsukuba, Japan with SFIT2 spectral fitting program developed by Rinsland et al. (1998). It needs to select an appropriate wavenumber region and the optimization of fitting parameters is also needed. Now we are investigating these parameters in the NDACC/IRWG group and we will reanalyze the vertical profiles and column densities of CH$_4$. We found that the seasonal variation of the mixing ratios in the troposphere shows minimum in summer and maximum in winter, indicating that the chemical reaction with OH is main sink. And those in the lower stratosphere shows minimum in spring and maximum in autumn, indicating downward and upward shift due to stratospheric global circulation. The temporal variation of total column shows steplike increase in 2007 from preliminary analysis.

Keywords: FTIR, Trace Species, Methane
Development of the precise measurement of carbon dioxide in the atmosphere with optical spectrum analyzer

KUSAKARI, Satoshi1*, NAGAHAMA, Tomoo1, OGINO, Tatsuki1

1Solar-Terrestrial Environment Laboratory, Nagoya University

Carbon dioxide is the greenhouse gas which is most significant effect on global warming. So it’s necessary to observe transition of carbon dioxide precisely to understand global warming. Around 20 Fourier transform spectrometer (FTS), which is one of the precise measurement, have been operated in the world to observe column density of carbon dioxide in the atmosphere (XCO2). However, FTS have a high cost and are unsuitable for portable use and emissions and absorption of carbon dioxide have locality. So it’s necessary to observe carbon dioxide in atmosphere all over the world to understand emissions and absorption of carbon dioxide. Therefore we need the instrument which is compact, portable and can measure precisely. So the purpose is development of compact and precise measurement with optical spectrum analyzer (OSA). The instrument measures XCO2 to incorporate sunlight in OSA through an optical fiber and to measure sunlight’s absorption spectrum in the wavelength region of around 1600nm of carbon dioxide. Resolution of OSA is 0.02nm. We estimated the instrumental line shape (ILS) for OSA with laser and gas cell in the laboratory and include ILS in the result of Line-By-Line Radiative Transfer Model (LBLRTM). We show the measuring and analysis result and discuss ways to improve the accuracy.

Keywords: optical spectrum analyzer, carbon dioxide, precise measurement
A wavelength-scanned cavity ring-down spectrometer (CRDS, available from PICARRO, Inc., Santa Clara, CA) is a rapidly spreading observation instrument which can detect atmospheric CO2, CH4, and H2O simultaneously based on the principle of laser absorption technique (Crosson, 2008). Chen et al. (2010) made airborne observations of CO2 and CH4 over the Amazonian rain forest using a CRDS and evaluated its performance for CO2 measurement in comparison to NDIR. These investigators reported the CRDS measurements were affected by the variations in inert gaseous species (N2, O2, and Ar) due to pressure broadening effects (PBE) on absorption spectrum of CO2 and CH4. However, the magnitudes of the pressure broadening effects were not tested. In this work PBE of N2, O2, and Ar on the CO2 and CH4 measurements by means of a wave scan cavity ring-down spectrometer was examined through the experimental approach. Our experiments revealed similar PBE behaviour on CO2 and CH4. The relative increase of N2 in the sample gas shows negative PBE while those of O2 and Ar show positive PBE. Maximum PBE was observed for N2, followed by O2 and minimum for Ar. For example, PBE of N2 on the CO2 measurement at the 2.5% increase is estimated to be -0.93 ppmv while those of O2 and Ar is +0.23 ppmv and +0.01 ppmv, respectively. For CH4, PBE at 2.5% increase is estimated to be -1.08 ppbv while those of O2 and Ar is +0.22 and +0.02 ppbv, respectively. Based on the experimental results, possible PBE during the synthetic standard gas measurements was considered. We inferred substantial PBE for both CO2 and CH4 within +/-0.6 ppmv for CO2 and +/-0.6 ppbv for CH4 during the measurement of the standard gas balanced with the synthetic air consists of N2, O2, and Ar. On the contrary, negligible PBE was estimated empirically up to -0.05 ppmv for CO2 and -0.07 ppbv for CH4 during the measurements of purified air-balanced standard gases. Our results clearly indicated that natural air-based standard gas should be used to remove the possible bias during the ambient air measurements and otherwise purified air-balanced standard gas should be used after the isotope correction.

Keywords: cavity ring-down spectrometer, carbon dioxide, methane, pressure broadening, continuous measurements
Continuous measurements of the atmospheric O2/N2 ratio at suburban and coastal sites in the northeastern part of Japan

GOTO, Daisuke1, Shinji Morimoto2, Shuji Aoki1, Takakiyo Nakazawa1

1Graduate School of Science, Tohoku University, 2National Institute of Polar Research

To contribute to a better understanding of the global carbon cycle in terms of atmospheric O2, a high precision continuous measurement system of the atmospheric O2 concentration (defined as d(O2/N2)) was developed. Using this measurement system, systematic and continuous observations of the atmospheric d(O2/N2) were initiated at Aobayama (AOB), Japan in February 2007 and on Enoshima Island (ENS), Japan in October 2008.

At AOB, d(O2/N2) showed a clear seasonal cycle with the minimum value in late March to early April and the maximum value in late July to early August, superimposed on a secular decrease. The CO2 concentration increased secularly and varied seasonally in opposite phase with d(O2/N2). Short-term variations on time scales of several hours to several days were also clearly observed. In winter, it was often seen that d(O2/N2) sharply declined in a short time, accompanied by an increase in the CO2 concentration, and the low values last for several hours to a few days. The -O2:CO2 exchange ratio was found to be 1.39-1.38 ppm/ppm for such wintertime short-term variations. Since these ratios are in good agreement with a mean value of the -O2:CO2 exchange ratio calculated for fossil fuel consumption in Japan, the observed decline in d(O2/N2) is ascribed to the transport of urban air influenced by human activities.

In summer, a clear diurnal cycle was observable for both the atmospheric d(O2/N2) and CO2 concentration, due mainly to terrestrial biological activities near the site. The average -O2:CO2 exchange ratio over the summer periods of 2007-2010 was found to be -1.08 (0.10σ) ppm/ppm for the daytime and -1.08 (0.10σ) ppm/ppm for the nighttime, which are in excellent agreement with -1.10 (0.05σ) ppm/ppm reported by previous studies. (σ: standard deviation)

At ENS, d(O2/N2) and CO2 concentration varied seasonally, the respective temporal patterns being similar to those at AOB. However, the seasonal peak-to-peak amplitude of APO (=O2/1.1*CO2), which varies mainly by the air-sea O2 exchange, is twice larger at ENS than at AOB. This implies that the seasonal cycle of d(O2/N2) at ENS is much more strongly affected by the air-sea O2 exchange, compared to that at AOB. In addition to the clear seasonal cycle, irregular short-term fluctuations of APO were observed especially in spring and summer. By comparing the backward trajectories with the distributions of marine biotic net primary production (NPP) around Japan, it was suggested that the short-term APO fluctuations are closely related to O2 emissions due to marine biological production.
Relationship between seasonal cycle of APO at Cape Ochi-ishi and net primary production in the western North Pacific

TOHJIMA, Yasunori1+, YAMAGISHI, Hiroaki1, Hitoshi Mukai1, MACHIDA, Toshinobu1, MINEJIMA, Chika2, NAKAOKA, Shin-ichiro1, Sayaka Yasunaka1, Yukihiro Nojiri1

1National Institute for Environmental Studies, 2Tokyo University of Agriculture and Technology

We examine the seasonal variation of the atmospheric potential oxygen (APO=O2+1.1xCO2) observed at Cape Ochi-ishi (COI; 43.2oN, 145.5E) during the period from 1999 to 2011. Because APO is invariable with respect to the terrestrial biotic exchanges, its seasonal variations mainly reflect air-sea exchanges of O2. Generally, the ocean takes up O2 in fall and winter, and releases O2 in spring and summer. This seasonal variation in the O2 fluxes, partially explained by the temperature-induced solubility changes in surface waters, is strongly driven by ocean biological and dynamical processes in the mid and high latitude region. In fall and winter, surface cooling causes the oceanic ventilation, which brings deeper waters with depleted O2 in contact with the atmosphere. In spring and summer, O2 production occurs during the phytoplankton blooms. Actually, APO observed at COI shows minimum in February-March and maximum in June-July, and the seasonal peak-to-peak amplitude is about 70 per meg. However, the seasonal amplitude increased during 2004-2006; especially in 2005 the amplitude reached about 90 per meg. As was previously reported, in-situ observation of APO at COI showed large short-term variations with significantly elevated values from late May to early July in 2005. The backward trajectory analysis suggested that the elevated APO were associated with occurrences of strong net primary production (NPP), which is satellite-derived estimation from the Vertically Generalized Production Model (VGPM), in the Okhotsk Sea and the western North Pacific. Comparing the seasonal amplitude of APO with the NPP from the VGPM for the rectangular region (35-55N, 140-160E) in the western North Pacific, we find there is positive correlation between the APO seasonal amplitude and the NPP in June. This result suggests that the seasonal amplitude of APO at COI may reflect the strength of the NPP in the Okhotsk Sea and the western North Pacific.

Keywords: atmospheric O2, APO, ocean primary production, VGPM
The vertical profiles and its variations of methane at Poker flat observed by ground-based FTIR spectrometer

MARUNO, Kouichi1*, MURATA, Isao1, KASAI, YASUKO2, KAGAWA, Akiko2, KASABA, Yasumasa1

1Tohoku University, 2NiCT

Abundance of methane has increased in long term, but no growth in 2000-2006. In this paper, we report variations of the vertical profiles of methane observed from 2004 to 2010 at Poker Flat, Alaska.

In the terrestrial atmosphere, methane is thought as the second important greenhouse gas, because its global warming potential is 21 times of CO2. Methane is primarily produced by the anthropogenic activity, i.e., ruminants of cattle, paddy fields, natural gases, and biomass burning. They cause 70 percent of total methane emissions. Natural emissions occur from wetlands, termites and so on.

According to IPCC AR4, methane abundance is reported to increase from the Industrial Revolution, from 800ppb to 1900ppb. However, it show little change in 2000- 2006. Its origin is still not established.

We are analyzing the vertical profiles of methane and its seasonal and annual variations based on the FTIR (Fourier Transform Infrared Spectrometer) observation from 2004 to 2010 at Poker Flat, Alaska. The observed spectra are fitted by the program SFIT2 using Rodgers Optimal Estimation Method (OEM). Five microwindows between 2600 and 3000 cm-1 are used for this retrieval. In this paper, we will present the seasonal and annual variations at several altitudes. It will be validated by the methane data obtained by ACE-FTS (2003-) or MIPAS (ENVISAT, 2002-) spacecraft measurements in same term.

Keywords: methane, FTIR
Development of a near-infrared laser based spectrometer for measurements of CO2 stable oxygen isotopes

KOJIMA, Ryota1,*, TANAKA Kotaro2, TONOKURA Kenichi2

1Tokyo University of Science, 2Graduate school of frontier sciences, The University of Tokyo

1. Introduction

In recent years, due to human activities such as burning of fossil fuels and deforestation, the anthropogenic CO2 in the atmosphere which causes global warming and environmental impacts is increasing. CO2 originated in the various sources such as anthropogenic emissions, plant photosynthesis, and the ocean. Since CO2 stable isotope ratio depends on the CO2 sources, the continuous measurement of CO2 stable isotope ratio in the atmosphere is a powerful method for investigating the sources of atmospheric CO2. Recently, the laser absorption spectroscopy has been applied to the measurements of the stable isotopes. Using this technique, the isotopomers are easily recognized without interference of other species. Therefore, since the sample gas is just introduced into the sample gas cell, the real-time measurements are able to be performed. In the 2-um near infrared region, the continuous measurements of the stable carbon isotopes have been performed. However, the measurements of the stable oxygen isotopes are not performed in this wavelength region. Accordingly, we developed the new system that enables the sensitive measurements of atmospheric CO2 stable oxygen isotope ratio in the 2-um near-infrared region.

2. Experimental

We applied wavelength modulation spectroscopy (WMS) to CO2 stable oxygen isotope measurement. A 2.045-um distributed feed-back (DFB) diode laser was used as a light source. The laser wavelength was sinusoidally modulated at 11 kHz. After the beam was passed through a Herriott-type multi-pass cell, it was focused onto a photodiode detector. The second harmonic (2f) signal was demodulated by a digital lock-in amplifier, and the data was acquired to a personal computer. CO2 stable oxygen isotope ratio was determined from the measurements of \(^{12}\text{C}^{18}\text{O}^{16}\text{O}/^{12}\text{C}^{16}\text{O}^{16}\text{O}\) spectrum signal ratio. A premixed diluted gas of 424.5 ppm, \(d^{18}\text{O} = 30.8 \text{ per mill in air was used as a sample gas.}\)

3. Results and Discussion

The influence of a pressure, temperature, and the intensity of neighbor peaks on the stable oxygen isotope measurements were simulated. From the result of the spectrum simulation, it was found that the \(^{12}\text{C}^{18}\text{O}^{16}\text{O}\) line, which is the 20012 - 00001 of the P(18) at 4890.586 cm\(^{-1}\), and the \(^{12}\text{C}^{16}\text{O}^{16}\text{O}\) line, which is the 20013 - 00001 of the R(56) at 4890.819 cm\(^{-1}\), are suited for stable oxygen isotope measurement. The signal was averaged over 100 consecutive scans at 0.77 Hz for the continuous measurement of the stable oxygen isotopes. In 2-hours measurement, the obtained precision was 0.07 per mill. The limit of detection for CO2 using our apparatus was 47.4 \(\pm\) 16.1 ppb.

4. Conclusions

Using WMS with a 2.045-um DFB laser diode and a Herriott-type multi-pass cell, the CO2 stable oxygen isotope ratio was measured. The precision of the 2-hours measurements and the limit of detection using our apparatus were achieved to be 0.07 per mill and 47.4 \(\pm\) 16.1 ppb, respectively. It was showed that the measurements of the CO2 stable oxygen isotopes ratio are able to be performed by using our apparatus.

Keywords: Measurements of stable oxygen isotope, Carbon dioxide, Wavelength modulation spectroscopy, Multi-pass, DFB laser