Japan Geoscience Union Meeting 2012

(May 20-25 2012 at Makuhari, Chiba, Japan)

©2012. Japan Geoscience Union. All Rights Reserved.

AAS21-P03

会場:コンベンションホール

時間:5月22日17:15-18:30

静止軌道およびISS による対流圏 NO 2 観測における地表面 BRDF の影響 The effect of the surface BRDF on the measurement of tropospheric NO2 from a geostationary orbit and ISS

野口 克行 ^{1*}, アンドレアス・リヒター ², ジョン・バローズ ², 入江 仁士 ³, 北 和之 ⁴ NOGUCHI, Katsuyuki^{1*}, Andreas Richter², John P. Burrows², IRIE, Hitoshi³, KITA, Kazuyuki⁴

1 奈良女子大学, 2 ブレーメン大学, 3 海洋研究開発機構, 4 茨城大学

BRDF (Bidirectional Reflectance Distribution Function) is the dependency of the surface reflectance on incident and output directions. Zhou et al. [2010] showed that the surface BRDF affects the retrieval of the tropospheric NO2 column density with sun-synchronous low Earth orbit (LEO) satellites, as line-of-sight angles largely change in the sun-synchronous LEO measurements. In the present study, we have estimated the influence of BRDF on the tropospheric NO2 DOAS retrieval supposing the observations of air pollution over Tokyo from a geostationary orbit (GEO) and ISS. In the analysis, we used the results of actual surface measurements: the MODIS BRDF product released by NASA. The result showed that the use of the assumption of Lambertian surface instead of BRDF would cause up to a 30% difference in the reflectance value. We also show the influence of such a difference on the tropospheric NO2 column density measurements.

キーワード: 静止衛星, 国際宇宙ステーション, 対流圏化学, 二酸化窒素, 双方向反射率分布関数 Keywords: Geostationary orbit, ISS, tropospheric chemistry, NO2, BRDF

¹Nara Women's University, ²University of Bremen, ³JAMSTEC, ⁴Ibaraki University