Stability and alteration of amino acid-related compounds against soft X-rays and extreme UV in interplanetary space

KAWAMOTO, Yukinori1*, Midori Eto1, OKABE, Takuto1, OBAYASHI, Yumiko1, Takeo Kaneko1, TAKAHASHI, Jun-ichi2, MITA, Hajime3, Kazuhiro Kanda4, KOBASHI, Kensei1

1Yokohama National University, 2NTT, 3Fukuoka Institute of Technology, 4University of Hyogo

Prebiotic organic matters such as amino acids have been found in extraterrestrial bodies. It was suggested that they were formed in cold space environment, and were delivered to the early Earth. Interplanetary dust particles (IDPs) were promising carriers since they could deliver organics safer than large meteorites or comets. On the other hand, IDPs are so small that they are directly exposed to the solar radiation, which may decompose or alter organic molecules in IDPs. In the present study, we evaluated the stability of amino acid-related compounds against soft X-rays and extreme ultraviolet light (EUV): Irradiation was performed at NewSUBARU BL-06 (Univ. Hyogo), and the irradiation products were analyzed by several methods including HPLC and XANES.

Five amino acid-related samples - Glycine (Gly), hydantoin (Hyd: precursor of glycine), isovaline (Ival), 5-Ethyl-5-methylhydantoin (EMHyd: precursor of isovaline) and complex organic compounds synthesized by proton irradiation of a mixture of CO, NH3 and H2O (referred to as CAW) - were irradiated with continuous light from soft X-rays to IR (hereafter referred as to soft X-rays) at NewSUBARU BL-06 (University of Hyogo) under high vacuum condition. After collecting the irradiated sample with pure water, we measured the recovery ratio of each compound by using ion exchange or reversed-phase HPLC systems. In some cases, CaF2 window was used to cut soft X-rays and EUV (referred as to VUV irradiation; cut-off wavelength is ca. 130 nm).

Amino acids or their precursors were gradually decomposed by soft X-rays irradiation, and water-insoluble organics were formed. The amino acid precursors (Hyd, EMHyd, CAW) were much more stable than the free amino acids (Gly, Ival) against soft X-rays. Thus, we could suggest that the precursor amino acids are likely to present more stable than free amino acids in space environment such as meteorite surface and in IDPs. Neither racemization nor formation of glycine was observed even after 99 % of the initial L-alanine was decomposed.

When CaF2 window was used, little insoluble matters were formed. Thus, soft X-rays (including EUV) are responsible for the formation of insoluble organics. Soft X-rays fraction in the solar radiation is small in the present time, but it is supposed that the strong X-rays were emitted from the young Sun before the formation of planetesimals. It should be examined the possible formation of insoluble organic matter, that is now found in carbonaceous chondrites and comets, by the irradiation with high-energy photons from the young Sun.

Keywords: amino acids, amino acid precursors, synchrotron radiation, soft X-rays, interplanetary space, origins of life
Studies on stability of nucleic acid bases by irradiation with soft X-rays and heavy ions

OKABE, Takuto\(^1\)*, KAWAMOTO, Yukinori\(^1\), Midori Eto\(^1\), OBASHI, Yumiko\(^1\), Takeo Kaneko\(^1\), TAKAHASHI, Jun-ichi\(^2\), Kazuhiro Kanda\(^3\), KUWANO-YOSHIDA, Akira\(^4\), KOBAYASHI, Kensei\(^1\)

\(^1\)Yokohama National University, \(^2\)NTT, \(^3\)University of Hyogo, \(^4\)National Institute of Radiological Sciences

Biological molecules such as amino acids and nucleic acid bases have been found in carbonaceous chondrites. It was supposed that they were synthesized from interstellar media, and brought in parent bodies of meteorites or comets in the early solar system. Organic compounds in extraterrestrial bodies are exposed to both cosmic and solar radiation. Organics in microscopic cosmic dusts are, especially, exposed to high-energy solar photons including soft X-rays and extreme UV light. In the present study, we irradiated nucleic acid bases with high-energy particles and photons from accelerator, and evaluate their stability in space.

Aqueous solution of nucleic acid bases (adenine, cytosine, uracil or guanine) was evaporated to dryness on a glass plate, and was irradiated with continuous light (infrared to the soft X-ray; hereafter referred to as soft X-rays) at BL-6 of NewSUBARU synchrotron facility (University of Hyogo) under high vacuum (ca. \(10^{-4}\) Pa). In the case of guanine, dried sample was covered with hexatriacontane to prevent sublimation during irradiation under vacuum. Irradiation through CaF\(_2\) window was also performed in the case of adenine and uracil, where soft-X rays and UV below 130 nm were cut. Aqueous solution (1 mM each) of nucleic acid bases (adenine, uracil, cytosine) were irradiated with high energy carbon ions (290 MeV) at HIMAC (NIRS, Chiba, Japan). Nucleic acid bases after irradiation were determined by reversed-phase HPLC. Irradiated cytosine was also analyzed by MALDI-MS.

In the soft X-rays irradiation experiments, decomposition of nucleic acid bases was observed: purines (adenine, guanine) were more stable than pyrimidines (cytosine, uracil). By using a CaF\(_2\) window, survival ratio of bases was increased. Soft X-rays were more effective for the decomposition of bases than VUV and UV. By reversed-phase HPLC analysis, no new compounds other than the original bases were detected, but water insoluble materials were observed on the glass plate. We are going to analyze the insoluble residues by MALDI-MS. Compared to the results of irradiation of amino acids and hydantoins (amino acid precursors) [1], nucleic acid bases were more stable than amino acids and hydantoins.

In the heavy ions irradiation, adenine was most stable among the bases examined. New peaks were observed in MALDI mass spectrum of cytosine after irradiation (m/z =128, 222, 237, 333, etc.), which suggested the possible formation of multimers.

Keywords: nucleic acid bases, soft X-rays, heavy ions, origins of life, interplanetary dust particles, meteorites
Possible amino acid formation pathways in submarine hydrothermal systems

KONDO, Yuichi1∗, Kurihara Hironari1, KUWAHARA, Hideharu2, OBAYASHI, Yumiko1, Takeo Kaneko1, KOBASHI, Kensei1

1Graduate School of Engineering, Yokohama National University, 2Graduate School of Frontier Sciences, University of Tokyo

In prior to the generation of terrestrial life, bioorganic compounds such as amino acids are essential. Possible sites for the formation of amino acids are (i) interstellar space, (ii) primitive atmosphere and (iii) submarine hydrothermal systems. If the primitive Earth atmosphere was neutral (i.e., chiefly composed of carbon dioxide and nitrogen), formation of amino acids was quite limited, but carboxylic acids could be formed by spark discharges and other energy sources. If the carboxylic acids, especially keto acids, formed in the atmosphere were introduced to submarine hydrothermal systems, we can expect the formation of amino acids from carboxylic acids and ammonia dissolved there. In the present work, we examined possible formation of keto acids from simulated primitive atmosphere, and possible formation of amino acids from keto acids and ammonia by using a flow reactor simulating submarine hydrothermal systems.

Spark discharge experiments: A mixture of carbon dioxide (300 Torr) and nitrogen (300 Torr) was introduced to a 400-mL Pyrex flask over 5 mL of water, and spark discharges were applied to the gas mixture for 12 hours. After discharges, the resulting products were recovered from the flask, and amino acids were analyzed after acid-hydrolysis of the product.

Flow reactor experiments: We constructed a specially designed flow reactor (supercritical water flow reactor [1]), which allowed aqueous samples heated up to 673 K for minutes without pre-heating and then quenched to 273 K. The pressure was maintained at 25 MPa during the heating. A mixed solution of 10 mM of pyruvic acid and 10 mM of ammonia was injected to the flow reactor, and heated at 473-673 K for 2 min. The resulting products recovered were acid-hydrolyzed, desalted with a Monospin SCX cation-exchange resin, and applied to an amino acid analyzer (Shimadzu LC-10A).

In the spark discharge products, we could not detected amino acids, but some carboxylic acids were detected by capillary electrophoresis. Thus it is difficult to obtain amino acids by spark discharges in neutral atmosphere. We are trying to detect keto acids in the discharge products.

Amino acids (glycine and serine) were detected after a mixture of pyruvic acid and ammonia was heated at 523 K in the flow reactor. It suggested that carboxylic acids and ammonia formed from neutral atmosphere could react to give amino acids in submarine hydrothermal systems.

Keywords: submarine hydrothermal systems, amino acids, primitive atmosphere, spark discharge, flow reactor, origins of life
Effects of glycine and its decomposition products on polymerization of methionine under high temperature and pressure

HUANG, Rui1*, FURUKAWA, Yoshihiro1, KAKEGAWA, Takeshi1

1Graduate School of Science, Tohoku University

Polymerization of amino acids is an essential process for the origin of life. Several geological settings have been proposed as the place for the polymerization: sub-marine hydrothermal vent (Imai et al., 1999), tidal flats (Lahav et al., 1978), and marine sediments (Nakazawa et al., 1993). Previous studies suggest the importance of the marine sediments to produce longer peptides (Ohara et al., 2007; Otake et al., 2011). These previous studies suggest that the reactivity of each amino acid is widely different. This may lead to skepticism about the formation of peptides composed of plural amino acids. However, there has been no experiment that investigated the oligomerization of plural amino acids. In this study, we investigated polymerization of methionine under the conditions of high temperature and high pressure (at 175°C, 150 MPa, 0-96 hours).

Starting materials were solid methionine and solid methionine with solid glycine, water, aqueous ammonia, or ammonium hydrogen carbonate. The additives in the starting materials other than glycine (water, aqueous ammonia, and ammonium hydrogen carbonate) are simulating decomposition products of glycine. Ammonium hydrogen carbonate decompose at about 60°C and yields ammonia, carbon dioxide, and water. For each starting material, 0.43 mmol of methionine were used. The amounts of additives were 0.43 mmol. Each starting material was sealed into a gold tube of 25 mm length and 5.5mm diameter. Then, high temperature and pressure conditions were applied using a test-tube-type autoclave system. Amino acids and their oligomers were extracted into aqueous solution from the experimental products and analyzed with a high performance liquid chromatograph connected to a mass spectrometer (LC/MS).

Methionine was polymerized to di-methionine, tri-methionine and methionine diketopiperazine in experiments adding water, ammonia, ammonium hydrogen carbonate, and glycine. On the other hand, peptides other than di-methionine were not formed in experiments using methionine alone. Methionyl-glycine and glycyl-methionine were produced in experiments containing each additive. In all experiments, methionine decomposed with reaction time. In experiments with additives, reaction rates of methionine decomposition and methionine-peptide formation were increased. These rates were especially increased in samples containing aqueous ammonia, and ammonium hydrogen carbonate, suggesting that ammonia and carbon dioxide promote the production rates of peptides and decomposition reactions of methionine. Compared with previous study (Ohara et al., 2007), these results indicate that the reaction rate of methionine peptide formation was far lower than that of glycine. However, this rate was increased with addition of glycine. The present results also suggest that decomposition products of glycine especially ammonia and carbon dioxide increased the reaction rate of methionine.

When these results are applied to diagenesis in Hadean marine sediments, these results suggest that amino acids of low reactivity may be activated by amino acids of high reactivity and produced peptides composed of both amino acids.
Effects of salt on organic molecule formations by oceanic impacts on early Earth

SUZUKI, Chizuka1*, FURUKAWA, Yoshihiro1, Takamichi Kobayashi2, KAKEGAWA, Takeshi1

1Graduate School of Science, Tohoku University, 2High Pressure Group, National Institute for Materials Science

When the surface of Hadean Earth solidified, it is thought that the atmosphere of the Earth was composed mostly of carbon dioxide and nitrogen (Kasting and Howard, 1993). It has been suggested that one of the processes to supply organic molecules on early Earth was the oceanic impact. It was suggested that amines, carboxylic acids, and glycine were formed by the shock-recovery experiments simulating oceanic impact on early Earth (Furukawa et al., 2009). The previous study used starting materials comprising mixture of iron, nickel, carbon (13C), and gaseous nitrogen or ammonia. However, no previous study has examined the effects of brine composition on the formation of organic molecules by oceanic impact. In this study, shock-recovery experiments were performed with a single-stage propellant gun to investigate the effects of ionic strength on the formation of organic compounds by oceanic impact on early Earth. We used starting materials comprising mixture of iron, nickel, carbon (13C), gaseous nitrogen, and sodium chloride solution or water. After the impact experiments, soluble organic compounds were extracted into water and analyzed amines, amino acids, and ammonia by liquid chromatography-mass spectrometer (LC/MS). Solid materials were analyzed using X-ray powder diffractometry (XRD) after drying. Glycine, methylamine, ethylamine, and propylamine whose carbons are composed of 13C were identified in the sample free from sodium chloride. While, only 13C-methylamine and 13C-ethylamine were identified in the sample containing sodium chloride. Iron was more oxidized in the sample containing sodium chloride. This suggests that more ammonia was formed in the sample containing sodium chloride. On the other hand, yields of amines in the sample free from sodium chloride were higher than those containing sodium chloride. This suggests that sodium chloride restricted the reaction to form alkyl chain or reactions between ammonia and hydrocarbons. The present results suggest that sodium chloride restricts the reactions forming organic molecules by oceanic impact on early Earth.
Effects of borate on the reaction between glyceraldehyde and glycoraldehyde

HORIUCHI, Mana¹, Yoshihiro Furukawa¹, Takeshi Kakegawa¹

¹Department of EARTH SCIENCE, Graduate School of Science, Tohoku University

Ribose is an essential component of RNA, and its formation in the prebiotic Earth is important to promote chemical evolution for origin of life. For the abiotic ribose formation, the formose reaction has been investigated by previous researchers [e.g., 1]. The formose reaction produces carbohydrates by series of polymerization of formaldehyde with catalytic base [2]. The carbohydrates produced in this reaction contain pentoses (ribose, arabinose, xylose, and lyxose). One of the problems is that these carbohydrates are highly reactive in alkaline solutions. Therefore, pentoses are rapidly decomposed. Recently, researchers proposed that ribose is stabilized by the complexation with borate and silicate [3, 4]. Ricard et al., (2004) offered the experimental data indicating the increased stability of the total amount of pentoses by the complexation with borate. However, there has been no clear evidence as to which pentoses are stabilized by effects of borate. Because the formose reaction produces variety of carbohydrates, it is difficult to perform quantitative analysis of each product. In particular, quantitative analysis of ribose needs chromatographic separation accompanied with mass spectrometry analysis. However, a previous analytical method for each pentose needed derivatization. In the present study, we report the qualitative analytical method for ribose in the mixture of pentoses without derivatization. Then, we analyzed ribose in the products of a simplified formose reaction in the presence of borate.

New analytical method for pentoses and pentose-borate complex was developed using a liquid chromatograph (2695 separation module; Waters Co.) connected to a tandem mass spectrometer (Quatromicro API; Waters Co.). Several ligand exchange columns and eluents were tested in order to identify the suitable combination to separate pentoses and pentose-borate complexes. As a result, pentoses were separated using the ligand exchange columns with a function of zinc coordination. The ligand exchange columns with a function of sodium coordination retained pentose-borate complexes. Using these analytical methods, we performed experiments to examine borate effects to stabilize individual pentose (experiment 1) and products by the simplified formose reaction under borate presence (experiment 2). In the experiment 1, decomposition rates of individual pentose were investigated in an alkaline solution. Experiments were performed either with or without sodium borate. The results indicate that the presence of borate affected differently on the stability of individual pentose. The decomposition rates of ribose and arabinose were decreased significantly in borate solution, although decomposition rates of xylose and lyxose were not affected by borate.

In the experiments 2, glyceraldehyde and glycoraldehyde was reacted in base with or without sodium borate. Formation of pentoses including ribose was confirmed and the yields of all pentoses became maximum within 5 minutes. After 5 min, the yields of pentoses decreased, although the yields of some pentoses experiments with borate became higher than those without borate. This result indicates that effects of borate differ depending on individual pentoses. In both experiments, the yields of ribose increased by the addition of borate. Pre-biotic ribose was most likely formed and stabilized under borate-rich Hadean oceans, which was also supported by finding of borate minerals in the early Archean sedimentary rocks.

References
Effects of metal ions (Ca2+, Mg2+, Zn2+, Cu2+) and pH on the formation and decomposition rates of di- and tripeptides

SAKATA, Kasumi1, YABUTA, Hikaru1

1Osaka University, Department of Earth and Space Science

Introduction: Recent finding of the serpentinization-driven deep-sea vent systems producing basic fluids, such as the Lost City hydrothermal field (Kelley et al. 2005) and the south Chamorro seamount (Hulme et al. 2010), has improved our understanding that submarine basic seepages are plausible environments for the origin and evolution of life in the early Earth (Russell, 2003). In our previous study, it was revealed that the dimerization of glycine (Gly) in aqueous solution reached the maximum rate in basic solution at pH 9.8 and 150°C (Sakata et al., 2010), supporting Russell’s hypothesis. However, the effects of metal ions on peptide formation under basic pH condition have not been well investigated. In this study, the heating experiments of Gly solution containing Ca2+, Mg2+, Zn2+ or Cu2+ were conducted under various pH conditions, in order to evaluate the effects of metal ions on the formation and decomposition rates (kₙ) of glycylglycine (GlyGly), glycyglycylglycine (GlyGlyGly) and diketopiperadine (DKP).

Experimental: Aqueous solutions of 100 mM Gly, 100 mM Gly containing with 5, 200 and 400 mM CaCl₂, 5 mM MgCl₂, 5 mM ZnCl₂, and 5 mM CuCl₂, respectively, were prepared. Each solution was adjusted to acidic (pH = 2.2 ~ 2.3), neutral (pH = 4.5 ~ 6.0) and basic (pH = 9.8 ~ 9.9). The solutions containing CuCl₂ were adjusted to pH = 3.4 and 9.8. Half milliliter of each solution in a pyrex glass tube was replaced with Ar gas and sealed under vacuum. These samples were heated at 140°C for 1 to 74 days. After heating, the samples were 10 times diluted and 100 micro liters of each solution was analyzed by High Performance Liquid Chromatography (HPLC). In this experiment, the six reaction pathways were considered: 2 Gly to GlyGly (k₁), GlyGly to 2 Gly (k₋₁), GlyGly to DKP (k₂), DKP to GlyGly (k₋₂), Gly + GlyGly to GlyGlyGly (k₃) and GlyGlyGly to Gly + GlyGly (k₋₃). The rate constants were determined by fitting the changes of the concentrations of Gly, GlyGly, GlyGlyGly and DKP with increasing heating time using the least-squares method.

Results and discussion: The concentrations of GlyGly in the aqueous solutions of Gly containing Ca2+, Mg2+ and Zn2+ under any pH condition, respectively, were lower than those without metal ions. The concentration of GlyGly decreased with increasing concentrations of Ca2+. In the aqueous solutions of Gly containing Cu2+, the concentration of GlyGly was higher at basic pH than those without metal ions, while it was lower at acidic pH. GlyGlyGly was yielded only in the solutions containing Cu2+, and it was the most abundant at basic pH. Under the basic pH, the concentrations of DKP in the solutions containing any metal ion were lower than those in the solution of Gly only. All the rate constants (k₁, k₋₁, k₂ and k₋₂) for the aqueous solutions of Gly containing Ca2+, Mg2+ and Zn2+ (5 mM) at any pH were lower than those for the solution without metal ions. The result indicates that Ca2+, Mg2+ and Zn2+ inhibit the formation of GlyGly and DKP. For the aqueous solution of Gly containing Cu2+, k₁ and k₋₁ showed high values and k₂ and k₋₂ showed low values compared to those without metal ions. Thus, Cu2+ promotes the reactions between Gly and GlyGly while it inhibits the reactions between GlyGly and DKP. In the solutions containing Cu2+, the values of k₃ and k₋₃ were higher at basic pH than those at acidic pH. Such differences in the formation and decomposition rates of di- and tripeptides due to the variety of metal ions can be caused by the steric effects of metal complexes of glycine.

References:
Kelley et al. (2005) Science 307, 1428-1434

Keywords: glycine, metal ions, pH, polymerization reaction, hydrolysis reaction, reaction rate
Decomposition and peptide formation of glycine on oxide and mineral surface under dry and wet conditions

FUCHIDA, Shigeshi¹, MASUDA, Harue¹

¹Department of Geosciences, Faculty of Science, Osaka City University

Peptide formation is an important process of the chemical evolution of precursor life on the primitive earth. It has been believed that sediments were good environment to proceed the chemical evolution, since mineral surface promoted oligomerization of amino acids and other biomolecules. In this study, the thermal behavior of amino acid adsorbed on minerals surface dry and wet condition was observed to evaluate the role of minerals for oligomerization.

Glycine (Gly) was adsorbed on alumina, amorphous silica and montmorillonite in 0.1 M solution. After drying, those were heated at 150 degree C for 3-288 hrs under wet and dry condition in glass ampoules. Gly and peptides were desorbed from mineral surface by 0.1 M CaCl₂ and the amounts of Gly remained and synthesized peptides were determined using HPLC.

The amount of Gly remaining on minerals exponentially decreased with heating time; 20 to 48 % Gly remained on mineral surface under dry condition after 288 hrs, and 59 to 73% under wet condition. 70% and 98% of Gly remained after heating without minerals under the dry and wet conditions, respectively. Minerals would not be protectors of amino acid but good catalysts to promote Gly reaction. Kinetic calculation indicates that the reaction rate of amino acids on mineral surface is 1.5-6 times faster under dry condition than wet condition. Since the decomposition of amino acids under wet condition was more slowly than under dry condition, dehydration would be the most dominant reaction under dry condition. Water inhibits Gly reaction under high temperature condition. The three types of peptide: diketopiperazine (DKP), diglycine (Gly₂) and triglycine (Gly₃) were detected in the system including montmorillonite heated under dry condition and reference solution. Peptides were not formed when amino acid adsorbed on alumina and silca was heated both in dry and wet conditions, probably because the concentration of peptide on alumina and silica surface was too low. The 15.57% of Gly monomer became peptides on montmorillonite under dry condition, and the most abundant product was DKP (10.03%). On the other hand, only 0.5% of Gly became DKP and Gly₂ were yielded in the solution without minerals. Thus, the peptides are accumulated more under the dry condition than hydrothermal condition, and the montmorillonite is a good catalyst.

Water was added to montmorillonite system after heating at dry and 150 degree C condition (dry/wet condition) for 168 hrs to check the change of stability of peptide synthesized and Gly monomer before and after the hydrolysis. 11.17% of DKP remained after heating in dry condition, while only 1.54 % of DKP remained in dry/wet condition. Decomposition rates of Gly₂ and Gly₃, were lower than that of DKP in those systems. The water added in the system promoted hydrolysis of DKP and Gly monomer, and destabilized those on the montmorillonite surface. The DKP on the montmorillonite would decomposed by hydroxyl ion, which was generated on mineral surface by the reaction with water. The existence of excessive water and hydroxyl ion is obstacle to condense DKP and elongate to form longer peptide. The maintaining of thermal dry condition is important to form and condense DKP on clay mineral surface. The condensation of DKP would be important as the first step of chemical evolution of life. If so, dry condition and existence of clay minerals would be essential factors to proceed the chemical evolution of precursor life on the primitive earth.

Keywords: peptide formation, dry sediment, glycine, clay mineral, chemical evolution, diketopiperazine
Microbe space exposure experiments at International Space Station (ISS) in the mission "Tanpopo"*

KAWAGUCHI, Yuko1,*, YANG, Yinjie1, Narutoshi Kawashiri1, Keisuke Shiraishi1, SUGINO, Tomohiro1, Yuta Takahashi1, Yoshiaki Tanigawa2, NARUMI, Issay3, Katsuya Satoh3, HASHIMOTO, Hirofumi4, Satoshi Yoshida5, KOBAYASHI, Kensei6, NAKAGAWA, Kazumichi2, YOKOBORI, Shin-ichi1, YAMAGISHI, Akihiko1

Origin of life on the Earth is one of most important issues for the biological studies. To explain how organisms on the Earth were originated at the quite early stage of the history of Earth, Panspermia hypothesis was proposed [1, 2]. Recent findings of the Martian meteorite suggested possible existence of extraterrestrial life, and interplanetary migration of life as well. On the other hand, microbes have been collected from high altitude using balloons, aircraft and meteorological rockets since 1936, though it is not clear how could those microbes be ejected up to such high altitude [3]. We have also collected microorganisms at high altitude by using airplanes and balloons. Spore forming fungi and Bacilli, and Deinococci have been isolated in these experiments. Our two high-altitude isolates of Deinococci were then suggested to be novel species by molecular phylogenetic analyses and other microbiological characterizations (D. aerius from top of troposphere and D. aetherius from bottom of stratosphere) [4-6]. Spores and Deinococci are known by their extremely high resistance against UV, gamma ray, and other radiations [4]. D. aerius and D. aetherius showed high resistance comparable with D. radiodurans R1 to the UV and ionizing radiation such as gamma rays. If microbes could be found present even at the higher altitude of low earth orbit (400 km), the fact would endorse the possible interplanetary migration of terrestrial life.

We proposed the "Tanpopo" mission to examine possible interplanetary migration of microbes, and organic compounds on Japan Experimental Module (JEM) of the International Space Station (ISS) [7]. Tanpopo consists of six subthemes. Two of them are on the possible interplanetary migration of microbes - capture experiment of microbes at the ISS orbit and space exposure experiment of microbes. In this paper, we focus on the space exposure experiment of microbes.

Microbes in space are assumed be exposed to the space environment with different depth of layered cells. This simulates different sizes of cell aggregates. Surface cells may protect inner cells against UV, although the former might die. Dried vegetative cells of D. radiodurans and our novel deinococcal species isolated from high altitude are candidates for the exposure experiment. We are now testing survivals of deinococcal species and strains under the harsh environmental conditions simulating ISS environmental conditions (UV, radiation, temperature, etc). The species we testing are D. radiodurans (R1, and some mutant strains for DNA repair systems which might affect survivability of cells under these conditions), D. geothermalis, D. aerius, and D. aetherius. In this paper, we discuss current status of exposure experiment of microorganisms defined for the Tanpopo mission and others.

References

Keywords: International Space Station, Deinococcus radiodurans, Deinococcus aerius, Deinococcus aetherius, Space exposure
A characteristic and problems of active life materials formed at the multiple cyclic systems in water planet

MIURA, Yasunori¹*

¹Visiting (Univ.)

A study on formation of life materials becomes popular inside and outside the Earth, but tries to explain a fundamental concept of the old life materials from the recent characteristic and problems as follows:

1) Life materials are active substances consisting of complex carbon-rich light elements-based molecules, to form symbiosis circular system mixed with material states of liquids and solids, such as complicated mini-type of active water planet.

2) Active life materials are formed by various energy sources at environmental areas in multi-complex reaction processes of long active Earth planet (approximately 5 billion years unit) and short-term life activity (from a year to 1 million years unit). Therefore a strong support of destruction and formation on an active water planet is required to the decomposition and formation of the life materials. The breaking destruction of active life and water-rich planetary materials is fairly easy, but it requires considerable time to develop new materials continuously on the old Earth and life body after global establishment of single and multiple cyclic systems.

3) When the above idea of multi-processes is applied to the extra-terrestrial planets and space, an active life material cannot exist in global waterless extraterrestrial bodies of the moon and waterless planets. In-situ active life materials cannot be largely formed on the surface, even if the local fluid-layer formed by shock-wave process is triggered by a surface collision. On the Asteroids, a life precursor is difficult to form when there is no circularity of the water and atmosphere other than shocked-monomer inorganic and organic substances, because stable compounds of the supra- and giant-molecules should be formed at relatively fluid-rich condition.

4) Carbon cycle system with the active life body is based on the closed system for state changes. However, life materials can be remained especially at the collision with water planet. In this sense, the discovery of a life material as fossil minerals from the carbon cycle system is largely possible, if there are larger aggregates broken by the planetary collision. Therefore, planetary exploration including the Moon and planet Mars is significantly required now and in future by long-time planning.

5) Small cyclic systems of active life materials including our mankind can be moved to extraterrestrial world as short travel time to be involved in wide cycle system in the solar system, though present cycle system on water planet (as in same Earth-type system) should be involved due to its active combined multi-system.

Keywords: Cyclic system, Active life materials, Water planet, Planetary impact, Life fossil, The moon