Global lightning characteristics deduced from ELF/VLF electromagnetic emissions observed by the DEMETER spacecraft

The global distributions of the ELF/VLF electromagnetic waves originated from world-wide thunderstorm activities are derived based on six-year record of the low altitude spacecraft data. The lightning electromagnetic pulses in the troposphere are observed as lightning whistlers by both electric and magnetic instruments onboard the low Earth orbit DEMETER satellite. The location and source intensity of each lightning event is determined by calculating approximate Poynting flux based on the survey frequency spectrum at the satellite orbit together considering transmission loss of the ionosphere. As a result three major thunderstorm active regions are clearly identified by enhanced Poynting flux values both for ELF and VLF frequency ranges. The region of high lightning activities in ELF frequency range representing the proxy of lightning discharges with a large charge moment change are differ from those in the VLF frequency range indicating a large peak current. Spatial distribution of the global lightning with a different time scale such as day-night asymmetry, seasonal migration and yearly dependence are presented as well. Finally, the source locating accuracy and magnetic conjugate effect of the VLF propagation are examined by the aid of the World Wide Lightning Location Network (WWLLN) data.
Comparison of ELF Inversion Methods for Global Lightning Activity

Earle Williams1*, Vadim Mushtak1, Alexander Shvets2, Masashi Hayakawa3, Yasuhide Hobara3

WILLIAMS, Earle1*, Vadim Mushtak1, Alexander Shvets2, Masashi Hayakawa3, Yasuhide Hobara3

1Massachusetts Institute of Technology, 2Usikov Institute of Radiophysics and Electronics, 3University of Electrocommunications (Chofu)

The natural Earth-ionosphere waveguide provides a framework for global lightning detection at both ELF and VLF frequencies. Increased attention has been given recently to ELF methods, primarily because of the reduced attenuation and the smaller number of receiving stations required. In the inverse problem in the Schumann resonance band (4-40 Hz), measurements of background field spectra at multiple stations (giving a number of measured inputs N) are used to infer the global distribution of lightning sources (as a number M of unknown quantities). Two entirely independent approaches have been pursued over the last decade, and are to be compared in this study. The first inversion method (Shvets et al., 2010) involves a two-step process. The first step makes use of a forward model with a uniform Earth-ionosphere waveguide and lightning sources on each of 20 annuli (M=20) surrounding each receiving station but with spectral resolution of 0.1-0.2 Hz for a total N=350 inputs from field spectra over the Schumann band. The solution is overdetermined. The second step, a tomographic procedure, makes use of 3 receiving stations with 20 source points each, for a total N=60-120. Unknown sources are mapped on a grid with 5o resolution (0.5 Mm) from 60oN to 60oS for a total M=61 x 72 = 4392, in an underdetermined calculation. The second inversion approach (Mushtak and Williams, 2011) employs a non-uniform (day/night asymmetry) model for the waveguide, and a forward model with three dominant chimney sources: the Americas, Africa and the Maritime Continent. The input quantities for the iterative inversion are the modal peak intensities and frequencies for 3-4 resonant modes for all measured fields (at most, two magnetic and one electric) at 5-6 receiving stations, for a total N=50 to 100. The unknown quantities are the source strengths and locations for each of three chimneys (M=9) in an overdetermined calculation. Key features targeted for comparison are the relative strengths of the three dominant chimneys, the comparative strengths of secondary sources, and the day-to-day stability of the lightning activity in absolute units (C2km2/sec) on individual days in January 2009. Detailed results will be reported as they are available at conference time.

Keywords: Schumann resonances, inversion methods, global lightning, Earth-ionosphere cavity
Discharge height of lightning narrow bipolar event and its relationship with thundercloud

Ting Wu1*, Wansheng Dong2, Yijun Zhang2, Tsuyoshi Funaki1, Satoru Yoshida1, Takeshi Morimoto1, Tomoo Ushio1, ZenIchiro Kawasaki1

1Graduate School of Engineering, Osaka University, 2Chinese Academy of Meteorological Sciences

Narrow bipolar event (NBE) is one of the most special types of lightning discharge events. In order to study the characteristics of NBE, two experiments using VLF/LF lightning location network in Guangzhou and Chongqing of China were carried out, and thousands of both polarities of NBEs were recorded.

In order to accurately determine the discharge height of NBE, we developed a method employing ionospheric reflection pair of NBE. The VLF/LF signal produced by NBE is reflected between the ionosphere and the ground, producing ionospheric reflection pulse and ground-ionospheric reflection pulse. With simultaneous observations of the NBE by multiple stations, 3-D location of the NBE can be determined by time delays between the original signal of the NBE and its ionospheric and ground-ionospheric reflection signals. This method proves to be much more accurate than traditional time-of-arrival (TOA) technique.

With this method, discharge heights of thousands of NBEs were calculated. In Guangzhou, there are a total of 1318 and 625 height results for $+$NBEs and $-$NBEs. The geometric means (GMs) of discharge height are 12.1 km and 17.3 km. In Chongqing, there are a total of 5489 and 1400 height results for $+$NBEs and $-$NBEs with GMs of 9.9 km and 17.5 km. An interesting result of our calculation is that very few NBEs are above 19 km. The highest results in Guangzhou and Chongqing are 19.6 km and 19.9 km, but there are only 0.31\% of NBE in Guangzhou and 0.26\% of NBE in Chongqing that are above 19 km, all of which are negative polarity.

Distribution of NBE discharge height shows that $+$NBEs and $-$NBEs occur in two different altitudes, with $-$NBEs mostly higher than $+$NBEs. Most $+$NBEs occur between 8 and 16 km while most $-$NBEs occur between 16 and 19 km. On the basis of such distribution and discharge polarities of positive and negative NBEs, we conclude that $+$NBEs are probably produced between the main negative charge layer and the upper positive charge layer while $-$NBEs are probably produced between the upper positive charge layer and the screening negative charge layer at the cloud top.

In order to further study the relationship between NBE and thundercloud, we utilized observations of two thunderstorms producing more $-$NBEs than $+$NBEs by conventional S-band Doppler weather radar. The result shows that bursts of $-$NBEs are clearly related with strong convection within the thunderstorm. When large number of $-$NBEs are produced, 30-dBZ reflectivity height is higher than 15 km, indicating the thundercloud top is even higher, probably comparable to the discharge height of $-$NBE.

\textbf{Keywords:} Narrow bipolar event, Intracloud lightning discharge, lightning discharge height, convective strength, lightning location network
A Lightning observation network in Kansai using VHF and LF broadband digital interferometers

YOSHIDA, Satoru, TAKAYANAGI, Yuji, MORIMOTO, Takeshi, USHIO, Tomoo, Zen Kawasaki, NAKAMURA, Yoshitaka

1 Graduate School of Engineering, Osaka University, 2 Egypt-Japan University of Science and Technology, 3 Department of Electrical Engineering, Kobe City College of Technology

We have been designing and developing VHF and LF broadband digital interferometers (DITFs) that detect electromagnetic (EM) waves associated with cloud-to-ground and intracloud discharges, and locate the EM wave sources. We have been building up a lightning observation network consisting of VHF and LF DITFs around Osaka. The observation network covers the areas from Kobe to Nara. In this presentation we compare and discuss the observation results located by the observation network.

Keywords: Atmospheric Electricity, lightning discharge, Remote sensing
Simultaneous Optical and Electrical Observations for One Downward Bipolar Flash

Weitao Lu1*, Luwen Chen2, Yijun Zhang1, Daohong Wang3

1Laboratory of Lightning Physics and Protection Engineering, Chinese Academy of Meteorological Science, 2Lightning Protection Center of Guangdong Province, Guangzhou 510080, Guangdong Province, P. R. China, 3Department of Electrical and Electronic Engineering, Gifu University, Gifu 5011193, Japan

A downward bipolar flash, containing a positive first return stroke and 5 negative subsequent return strokes, was simultaneously recorded by two high-speed cameras, two Lightning Attachment Process Observation Systems (LAPOS), one fast antenna and one slow antenna at 17:54:14, 29 July 2010 (local time) in Guangzhou, Guangdong, China. The analysis shows that:

1) The overall flash duration is about 864 ms and all 6 strokes occur and propagate along a single channel. The interval between the first stroke (positive) and the first subsequent stroke (negative) is 279 ms, apparently bigger than those between the subsequent strokes, which are 76, 111, 78 and 149 ms. The average inter-stroke interval is about 138 ms. The peak current of the first positive stroke is 142.6 kA, much larger than those 5 negative ones, 4 of which are recorded by lightning location system with peak current values of from -22.9 kA to -32.0 kA.

2) The downward positive leader exhibits quite smooth channel without any branch in the view range of high-speed camera. The 2D velocity of the positive leader ranges from 2.1 to 3.4 \times 10^6 m/s, with a median value of about 2.5 \times 10^6 m/s. The positive leader propagates downward with a rising velocity trend. The 1D velocity of the positive return stroke is estimated to be about 1.2 \times 10^8 m/s. The 20% to 90% rising time of luminosity pulse of the positive stroke is about 2.5 us, and the duration from 20% front to 50% tail is about 55.4 us. The first positive stroke is followed by about 100 ms continuing current superposed with multiple pulse events.

3) The 2D velocities of subsequent dart-leaders range from about 4.0 \times 10^6 m/s to more than 12.4 \times 10^6 m/s. The 1D velocities of the subsequent negative return strokes range from 1.2 to 1.3 \times 10^8 m/s. The 20% to 90% rising time values of luminosity pulses of the subsequent negative strokes range from 1.3 to 2.2 us, and the durations from 20% front to 50% tail range from 64.8 to 82.3 us. Continuing current process with duration ranging from 3 to 11 ms as well as 2 to 4 evident M-components is observed following each negative stroke.
Observation of lightning discharges using VHF broadband interferometers

Wansheng Dong1∗, Yijun Zhang1, Hengyi Liu1
DONG, Wansheng1∗, Yijun Zhang1, Hengyi Liu1
1Chinese Academy of Meteorological Sciences
1Chinese Academy of Meteorological Sciences

Compact intracloud discharge (CID) is a distinct intracloud lightning discharge characterized by strong VHF emissions, and it is one of the most mysterious lightning events. The CID channel evolution images obtained by using VHF broadband interferometers are presented for the first time. Analysis of 11 CIDs shows that the channels of CIDs develop mainly in a vertical direction. The vertical scale of CIDs is in the range of 0.40?1.9 km. The average duration of VHF broadband emissions is 15 ms. The average apparent speed of CIDs is in a range of 0.44?1.0×10^8 m/s with a mean value of 0.61×10^8 m/s. The temporal-spatial evolution of the radiation sources of the CID shows an oscillation pattern, confirming the previous prediction that there is an oscillating current being reflected at the two ends of the CID channel. The estimated speed of the current wave in the CID channel is in a range of 0.56?2.6×10^8 m/s with a mean value of 1.4×10^8 m/s.

In this study, the spatial and temporal characteristic, power spectral density (PSD) in the 30MHz to 290MHz band and pulse train structure of 10 CPT records were analyzed. We found that the breakdown process associated with CPT is negative and similar with attempt leader or dart leader. The statistical result shows the average progression speeds of 10 CPT events are about 3.23×10^6 m/s-1 ? 1.93×10^7 m/s-1 with the mean value being 1.02×10^7 m/s-1. The average PSD of the CPT in the 30MHz-290MHz band is 1.8?11.6dB and 2.4?12dB larger than that of the step leader and dart leader in the same negative cloud to ground lightning. The mean value and standard deviation of the pulse separations in these chaotic pulse trains are 5.3 ? 9.0us and 2.7 ? 4.9us.

キーワード: Compact Intracoud Discharges (CIDs), Pulse Burst, Lightning Locating, Broadband Interferometer
Keywords: Compact Intracloud Discharges (CIDs), Pulse Burst, Lightning Locating, Broadband Interferometer
In this paper we perform 3D finite-difference time-domain (FDTD) method to compute the subionospheric VLF signal perturbations due to the ionization from mesospheric transient event such as red sprites. Spatial scales of columns are determined by the sprite images obtained from our optical observations during winter lightning activities over the sea of Japan. Numerical results indicate that the multiple sprites generate the complicated scattering pattern of the VLF transmitter waves depending on special orientation and extent of sprite ionization columns. Spatial dependence of the scattered amplitude are compared with those from the experimental results of VLF observation network.
Numerical modeling of the TLE-related particle precipitations due to wave-particle interactions in the magnetosphere

MUKAI, Norihito¹, HOBARA, Yasuhide¹, HAYAKAWA, Masashi¹, YAMAGISHI, Hisao², OKADA, Masaki²

¹Graduate School of Informatics and Engineering, UEC Tokyo, Japan, ²National Institute of Polar Research, Tokyo, Japan

It’s well known that high energy particles precipitate into the ionosphere caused by interactions between lightning generated whistler waves in the atmosphere and the energetic particles in the magnetosphere. Perturbation of the lower ionosphere due to the precipitating particles are monitored by the ground-based VLF measurement as a space trimpi event. In this study, the spatio-temporal dependence of precipitating particle energy flux were calculated by numerical simulations. In particular, we focus on the source spectrum of lightning discharges as one of the simulation inputs. The results from different types of source spectra such as TLE-producing and conventional discharges will be presented.
Lightning Applications in Severe Weather Research

Colin Price

PRICE, Colin

1Department of Geophysical, Atmospheric and Planetary Sciences, Tel Aviv University, Israel

The study of lightning and thunderstorms is important for many practical and scientific reasons. Although lightning is a direct hazard to aviation, power companies, and the public, while igniting many forest fires around the globe, lightning activity within thunderstorms is also related to different types of severe weather. Due to the relationship between cloud electrification and the microphysical and dynamic structure of these storms, changes in lightning characteristics in storms can tell us a lot about the inner workings of thunderstorms. Lightning activity has been related to the likelihood that storms will produce hail, flash floods, tornadoes and other wind damage. In addition, it has been shown that lightning is related to the intensification of typhoons. With regional and global VLF lightning detection networks today supplying data in real time, while in the near future we will have real time lightning data from geostationary satellites, lightning observations provide a useful tool to help in the forecasting of severe weather, and the possibility to provide early warnings for the public in advance of these damaging storms.

Keywords: lightning, severe weather, natural hazard

Keywords: lightning, severe weather, natural hazard
Measurements of the properties of ions generated in ambient air

NAGATO, Kenkichi
Kochi National College of Technology

Gaseous ions are ubiquitous in the lower atmosphere, mainly produced by galactic cosmic rays. Other ion sources such as radioactive decay, lightning, power transmission lines and combustion can enhance the ion concentration locally. Atmospheric ions are essentially important in Atmospheric Electricity because they provide electrical conductivity to the atmosphere.

Ions are involved in aerosol formation. Ions may grow sufficiently to become stable aerosol particles. Ion growth requires the presence of atmospheric trace gas molecules which have the ability to attach to ions. The ion growth speed which increases with the concentration of such trace gas molecules must be sufficiently large to allow ion growth within the relatively short ion lifetime. However such conditions are met only in certain atmospheric conditions. Whether ion induced aerosol formation makes a significant contribution to the atmospheric aerosol budget therefore remains an open question.

In addition, artificially produced ions have been reported to reduce the levels of particulates, air-borne microbes, odors and volatile organic compounds in indoor air. Because of these effects of ions, commercial electrical appliances with ionizers (mainly corona discharge type) are widely used in indoor environment. However, the detailed mechanisms by which the ions contribute to improving indoor air quality are not clearly understood.

To access the role of ions in atmospheric environment in more detail, obtaining information on ion properties such as composition and mobility (diameter) under variety conditions is important. In this paper, we present experimental results of measuring ions formed by corona discharge in ambient air using an ion mobility/mass spectrometer (IMS/MS).
Global electric circuit affected by Fukushima power plant accident

KAMOGAWA, Masashi1*, KAKINAMI, Yoshihiro2, TAKAHASHI, Yukihiro3, KIMURA, Yoshihisa1

1 Department of Phys., Tokyo Gakugei Univ., 2 Institute of Seismology and Volcanology, Hokkaido University, 3 Department of Cosmo-sciences, Graduate School of Science, Hokkaido University

2011年3月11日東北地方太平洋沖地震（M9.0）において発生した津波で福島第一原子力発電所に水素爆発事故が生じ、放射性汚染が東日本を中心に広域に生じた。本研究では、放射性物質の発生による大気電気の変動を調べ、地球規模の電気回路（グローバルサーキット）への影響を調べた。その結果、放射線源の発生地点150km未遠方では地表大気電場値は一桁以上の減衰し、その影響は地球地表界層放射線量とともに数カ月以上にわたって存在しているが、数百km以上の観測地点では地表大気電場への影響がみられなかった。

キーワード: Global electric circuit, Fukushima nuclear power plant accident, Atmosphere
Keywords: Global electric circuit, Fukushima nuclear power plant accident, Atmosphere
地圏-大気圏-電離圏結合（化学チャネル）に関する観測学的研究
Observational study of the Lithosphere-Atmosphere-Ionosphere Coupling (Chemical channel)

大山 佳織 1*, 服部 克巳 1, 市川 卓 1, 古屋 隆一 2
OYAMA, Kaori 1*, HATTORI, Katsumi 1, ICHIKAWA, Takashi 1, FURUYA, Ryuichi 2

1 千葉大学大学院理学研究科, 2 コムシステム株式会社
1 Chiba Univ., 2COM SYSTEM, INC.

近年、地震に先行する電離圏擾乱が多数報告されている。この現象を説明するために、地圏で発生した地震と電離圏での異常をつなぐメカニズムの解明が求められており、その候補として提案されているのが地圏-大気圏-電離圏結合 (Lithosphere-Atmosphere-Ionosphere coupling :LAI キッピング) である。LAI キッピングのモデルのひとつとして、地表からの放射性物質の放出に伴う大気電気学的変化がある。我々は、LAI キッピングを検証することを目的として東京と房総半島における大気電気学的パラメータ（大気イオン濃度、大気電場）の観測を行っている。

具体的には、大気イオン濃度を東京都昭島市、千葉県鴨川市清澄及び千葉県鴨川市内浦の 3 地点で、大気電場を千葉大学屋上及び清澄観測点で連続観測している。気象観測器を併設している観測点もあり、それぞれの値の変動と気象状態の関係を解明すること、そして地震に関係した大気イオン濃度・大気電場の変動の観測が期待される。本研究では、気象状態や放射線量率、地震と大気電気学的パラメータとの関係を調査した。

当日は 2011 年 3 月 11 日に発生した東北地方太平洋沖地震の前後の変動について報告する。各観測点での有意な変動が確認され、特に地震後の値の変動が顕著であり、大気イオン濃度の有意な上昇、大気電場の有意な減少がそれぞれの観測点で観測された。これは福島第一原子力発電所の事故により大気中へ放出された放射性物質が増加したことが影響していると考えられる。この変動は LAI キッピングの大気圏内の結合を説明する観測例である。地震に関係する放射性物質の放出があった際も、同様の変動が見られると仮定できることから、今後の LAI キッピング検証の手がかりとなると考えられる。

詳細な解析結果は当日の発表にて報告する。
Magnetic Storm Free ULF Analysis in Relation with Earthquakes in Taiwan

Chieh-Hung Chen¹⁺, Strong Wen², Horng-Yuan Yen³

CHEN, Chieh-Hung¹⁺, Strong Wen², Horng-Yuan Yen³

¹Institute of Earth Sciences, Academia Sinica, Taipei 115, Taiwan, ²Institute of Seismology, National Chung Cheng University, Chiayi 621, Taiwan, ³Institute of Geophysics, National Central University, Jhongli 320, Taiwan

Despite early optimism, pre-earthquake anomalous phenomena can be determined by using enhanced amplitude at the ultra-low-frequency range from geomagnetic data via the Fourier transform. In reality, accuracy of the enhanced amplitude in relation to earthquakes deduced from time-varied geomagnetic data would be damaged by magnetic storms and/or other unwanted influence resulted from solar activity and/or variations in the ionosphere, respectively. We substitute values of the cross correlation between amplitudes summarized from the earthquake-related (0.1-0.01 Hz) and the comparable (0.01-0.001 Hz) frequency bands for amplitude enhancements as an index of determination associated with seismo-magnetic anomalies to mitigate disturbance caused by magnetic storms. A station located about 300 km away from the others is taken into account to further examine whether changes of the cross correlation values are caused by seismo-magnetic anomalies limited within local regions or not. Analytical results show that the values suddenly decrease near epicenters few days before and after 67% (=6/9) earthquakes (M≥=5) in Taiwan between Sep. 2010 and March 2011. Seismo-magnetic signals determined by using the values of cross correlation methods partially improve results yielded from the Fourier transform alone and provide advantage information regarding forthcoming earthquakes in the time and spatial domains.

Keywords: Seismo-magnetic anomaly, Ultra low frequency
Is it possible to predict earthquakes? - There are reasons to believe

O Molchanov1, Schekotov Alexander1*, E Fedorov1, V Gladishev1, 早川 正士 2, 芳原 容英 2
O Molchanov1, SCHKOTOV, Alexander1*, E Fedorov1, V Gladishev1, HAYAKAWA, Masashi2, HOBARA, Yasuhide2

1Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, 123995, Bolshaya Gruzinskaya, 2The University of Electro-Communications, Tokyo, Japan

This report is dedicated to our friend and colleague Oleg Molchanov who passed away last year. During his last years the problem of earthquake forecast was the most important for Oleg and new approaches were developed and several interesting results were got under his leadership. Here we present only two of them, probably the most interesting and statistically significant. These seismo-electromagnetic effects due to their properties can be used for short-term earthquake prediction. The first one is the depression of the ULF magnetic field fluctuations 1-7 days before earthquakes. Contrary, the second effect is an additional emission in the atmosphere during the same time interval in the frequency range 1-50 Hz. The efficiency of both methods for the EQ forecast is verified at numerous earthquakes at Japan, Kuril Islands and Kamchatka. We also describe the measurement technique, the procedure for finding the precursors, and the methods of data processing.
Numerical modeling of seismo-ionospheric disturbances by FDTD method and comparison with experimental results from Japan

Recently many experimental results have been reported concerning the ionospheric perturbation associated with major earthquakes. VLF/LF transmitter signal received by network observations are used to detect seismo-ionospheric signatures such as amplitude and phase anomalies. These signatures are due to the ionospheric perturbation located around the transmitter and receivers. However the physical properties of the perturbation such as electron density, spatial scale, and location have not been understood well. In this paper we carried out the numerical simulation on the subionospheric VLF/LF signals including the various conditions of seismo-ionospheric perturbations by using a two-dimensional finite-difference time-domain (2D-FDTD) method to determine the perturbation properties. The amplitude and phase for the various cases of an ionospheric perturbation are calculated relative to the normal condition (without perturbation) as functions of distance from the transmitter and distance between the transmitter and perturbation. These numerical results are compared with our observation for several major earthquakes. As a result, we found that the received transmitter amplitude depends greatly on the distance between the transmitter and ionospheric perturbation, on the spatial scale and height of the perturbations. Moreover results of modeled ionospheric perturbation for the recent 2011 off the pacific coast of Tohoku earthquake are compared with those from our VLF network experiment.
Is IAR necessary for SRS? - Not always

Schekotov Alexander1, E Fedorov1, 芳原 容英2, 早川 正士2, 中村 遼平2, 塩川 和夫3, N Yagova1

SCHEKOTOV, Alexander1, E Fedorov1, HOBARA, Yasuhide2, HAYAKAWA, Masashi2, NAKAMURA, Ryohei2, SHIOKAWA, Kazuo3, N Yagova1

1Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, 123995, Bolshaya Gruzinskaya, 2The University of Electro-Communications, Tokyo, Japan, 3STEL, Nagoya University, Japan

We analyze magnetograms for the time intervals with clear spectral resonant structures (SRS) at frequencies 0.1–6 Hz. For this study we use the data of induction magnetometers from Moshiri (Japan) and Karimshino (Russia). The common view is that the SRS originate from excitation of the Ionospheric Alfven Resonator (IAR) by lightning discharges. However, rather frequently the typical picture in time domain includes only two pulses: the main pulse caused by a lightning discharge, and a single echo pulse following with delay from several tenths of seconds to several seconds. The secondary pulse can be explained by partial reflection of an initial wave from the steep gradient of Alfven velocity in the ionospheric F-layer. Thus, although a spectrum with the comb-shape structure is seen at IAR frequencies it can be sometimes successfully interpreted without resonance excitation.
The purpose of this paper is to present a possible precursor to the 2011 March 11 Japan earthquake. First of all, we present the results on subionospheric VLF/LF propagation anomaly (ionospheric perturbation) by means of Japan-Russia VLF network. It is found that the ionospheric perturbation is clearly detected on March 4, 5 and 6 on the propagation paths of NLK (Seattle, USA) to Japanese stations and on a path of JJI (Miyazaki, Kyushu) to Kamchatka. Next, we present the results on the ULF depression (horizontal component) on the same days, which is interpreted in terms of the absorption in the disturbed lower ionosphere of the downgoing magnetospheric Alfvén waves. These two precursors are considered to be due to the same effect of the lower ionospheric perturbation about one week before the earthquake.

Keywords: Seismo Electromagnetics, ULF emission
Analysis of Narrow Bipolar Pulse by VLF/LF broadband digital interferometer

Recent studies of radio frequency emissions from thunderstorms have noted a distinct class of very energetic pulses emitted from the upper troposphere. This pulse called narrow bipolar pulse (NBP) can be associated with a narrow bipolar event (NBE). This event is a large scale discharge of intracloud charge structures occurring in 10us.

We have been designing and developing a 3D lightning location system based on broadband digital interferometry technique in VLF/LF bands. The VLF/LF broadband digital interferometer (VLF/LF DITF) consists of four or more observation stations which detect electromagnetic (EM) waves in a wide frequency range from 400 Hz to 500 kHz associated with lightning discharges. The VLF/LF DITF is able to locate lightning discharges such as return strokes, K events, and NBP, which are energetic breakdowns within thunderclouds several hundred kilometers away from the VLF/LF DITF.

During the summer season in 2009, we had conducted lightning observation campaign with a use of a prototype of the VLF/LF DITF, which consisted of four stations in Darwin, Australia, to validate the system.

The observation results are compared with Doppler radar data operated by the Bureau of Meteorology (BOM) and the observations of VHF broadband digital interferometers (VHF DITF) which enable us to visualize leader developments associated with lightning discharges.

In this paper, we focus on the statistical altitude distribution of narrow positive bipolar pulses (NPBPs) and narrow negative bipolar pulses (NNBPs) in tropical regions.

Keywords: Narrow Bipolar Pulse, Lightning Discharge, Electromagnetic Source Location, Broadband Interferometry
Three-dimensional distribution of VHF lightning radiation sources

We have conducted a field observation, “the Shonai area railroad weather project”. This project has investigated fine-scale structure of wind gust using two X-band Doppler radars and the network of 26 surface weather stations since 2007, in order to develop an automatic strong gust detection system for railroad. We focus on total lightning (both intra-cloud (IC) and cloud-to-ground (CG) lightning) activity in winter to investigate the mechanism of winter lightning discharge process and the application to strong gust prediction. Thus, we have developed a three-dimensional (3D) lightning mapping system utilizing arrival time differences of VHF broadband pulses radiated by leader progression.

We investigate 3D distribution of VHF lightning radiation sources. In particular, the vertical distribution of VHF sources is compared with -10 degree C level. We analyze 3D lightning data observed in the Shonai area on November 30, 2010. The vertical distribution of the number of VHF sources exhibits a single maximum at 2.5-3.0 km altitude. The -10 degree C level retrieved from JMA-MANAL was 2.8 km at the same time. Hence, the vertical distribution of VHF sources is related to the atmospheric temperature level. In this presentation, we will also show the relationship between VHF source distribution and X-band radar reflectivity.

Keywords: Winter lightning, VHF observation, 3D mapping
Gradual energetic radiations probably caused by a summer thunderstorm have been observed at the top of Mt. Fuji, Japan on Aug. 8, 2011. The variation lasted for a few minutes, and was found to be high-energy gamma rays having a continuous energy spectrum up to around 10 MeV. The origin of variations might be the bremsstrahlung photons generated by the energetic electrons produced continuously with an intense electric field in the thundercloud.

Keywords: Energetic radiation, Thunder storm, Mt. Fuji
東京都心と富士山頂で測定した小イオン濃度
Concentration of small ions measured at the center of Tokyo and at the summit of Mt. Fuji

三浦 和彦 1*, 長岡 信伸 1, 鈴木 麻未 1, 府川 明彦 1, 永野 勝裕 1, 玉木 麻子 1, 山口 眞司 1, 上田 紗也子 1, 小林 拓 2, 保田 浩志 1

MIURA, Kazuhiko 1*, Nobuyori Nagaoka 1, Asami Suzuki 1, Akihiko Fukawa 1, Katsuhiro Nagano 1, Asako Tamaki 1, Shinji Yamaguchi 1, UEDA, Sayako 1, Hiroshi Kobayashi 2, Hiroshi Yasuda 3

1 東京理科大学, 2 山梨大学, 3 放射線医学総合研究所
1Tokyo University of Science, 2University of Yamanashi, 3National Institute of Radiological Sci.

近年、宇宙線強度と雲量の間に相関があることが指摘されたが、その原因としてイオン誘発核による粒子生成が考えられる。イオン誘発核生成は、既存粒子が少なく、小イオン濃度が高い環境で起こると予想されるが、定量的な報告は少ない。そこで、富士山山頂において、小イオン濃度と同時に、エアロゾル粒子の数ナノメートルからの粒径分布、ラドン濃度、宇宙線強度の同時測定を行った。また、比較のため、富士山麓、東京神楽坂においても同様な観測を行った。

観測期間は、富士山頂（3776m）が2011年7月29日～8月25日、2012年8月5日～23日、富士山麓（大蔵坊、1290m）が2012年8月9日～23日、東京が2011年10月31日2012年6月6日である。小イオン濃度はゲルディエン型（コムシステム COM-3400）を用いて測定した。限界移動度は0.7cm2/V·sに設定し、正負イオンを1分毎に交互に測定した。走査型移動度分析器（SMPS）と光散乱式粒子計数器（OPC KR12）を用いて4.4~5000nmにわたる粒径分布を測定した。ラドンは、フィルターに捕集したエアロゾルから放射するα線を計数し、放射平衡を仮定して求めた。

小イオンは宇宙線、地殻からの放射線、大気中ラドン及びその娘核種から放射される放射線による電離で生成され、正負の小イオンは再結合する事により消滅する。またエアロゾルに付着し電荷を受け渡し大イオンとなる。電荷を失ったクラスターはパララの分子となり消滅する。

\[
d\text{n}/dt = \text{q} - \cdot \·...
3-D tomographic approach to investigate the ionospheric disturbance prior to the 2011 Tohoku Earthquake

In this paper, neural network based tomography using GEONET data has been performed to investigate the fine structure possibly associated with the 2011 off the pacific coast of Tohoku Earthquake (Mw9.0). Although the possible ionospheric anomalies preceding large earthquakes have been reported by many researchers, a physical mechanism of the anomalies has not been clarified yet. To understand the mechanism, monitoring of three-dimensional distributions of ionospheric electron density is considered to be effective.

At first, the Total Electron Content (TEC) anomaly associated with the earthquake using the Global Ionosphere Maps (GIM) published by the Center for Orbit Determination in Europe (CODE) has been investigated. To detect the anomalous TEC changes, the normalized GIM-TEC (GIM-TEC\(^\ast\)), which is computed based on 15 days backward running mean of GIM-TEC, have been investigated. As for the 2011 off the Pacific coast of Tohoku Earthquake, the significant enhancements are found in GIM-TEC investigation, 1, 3-4 days prior to the earthquake. Especially, TEC increase of 3 days prior to the earthquake was remarkable. Then the tomography has been performed. As a result, the reconstructed distribution of electron density was enhanced around F-region in comparison with 15 days backward median distribution, the region was found to be located over the epicenter and extended farther southward. Additionally, we found the enhanced region at lower ionosphere over the Japan Sea and it seems to be developed toward the upper ionosphere along with magnetic field lines. In our presentation, the difference in the character of pre-seismic disturbance and other periods will be shown.