Energy budget and dynamics in the earth’s magnetosphere

OGINO, Tatsuki

Solar-Terrestrial Environment Laboratory, Nagoya University

Energy transport, accumulation and release, namely energy budgets are important problems in interaction between the solar wind and earth’s magnetosphere. We have studied distribution of three kinds of the kinetic, thermal and magnetic energies and three kinds of energy fluxes in the magnetosphere. Most dominant energy flux is Poynting flux in the magnetosphere which is main driver of magnetospheric convection. In the earth side of near-earth neutral line in plasma sheet, thermal energy flux is generally greater than kinetic energy flux, because thermal energy is large and Much number is less than unity. The kinetic energy flux firstly becomes small and the thermal flux does secondly when plasma high speed flows come close to the earth from the neutral line. Poynting flux survives finally and approaches near the earth in the plasma sheet and then carries the energy from nightside to dayside.

At the same time, as the solar wind and IMF becomes abnormal conditions, plasma turbulence are strongly excited in boundary layers on magnetosphere. In the plasma sheet magnetic reconnection occurs in patchy and intermittent manner to produce streamer-like structure. At the magnetopause, more regular vortex train is formed for northward IMF. It is because velocity shear created between the magnetosheath fast flow and magnetopause slow flow. On the other hand, sunward fast flow is produced by tail reconnection for southward IMF. Therefore two types of velocity shears created outside and inside of the magnetopause to excite Kelvin-Helmholtz instabilities in both sides. Moreover dayside reconnection occurs in patchy and intermittent manner to give seeds of plasma turbulence. As the results, complicated and strong vortex turbulence appears in flank magnetopause. We will demonstrate those phenomena from 3-dimensional visualization of simulation results to discuss relationship between the currents and vortices in boundary layers.

Keywords: MHD simulation, energy budget, interplanetary magnetic field, magnetic reconnection, magnetospheric dynamics, boundary layer instabilities
Propagation characteristics of ULF waves into middle latitude driven by solar wind dy-
namic pressure pulses

MATSUSHITA, Toshinori, SEKI, Kanako, NISHITANI, Nozomu, KIKUCHI, Takashi, MIYOSHI, Yoshizumi, HORIZ, Tomoaki, TERAMOTO, Mariko, Henri Reme, Howard Singer, Vassilis Angelopoulos

Many ULF waves (Pc5) in the magnetosphere are directly driven by the solar wind. It has been considered that these mag-
netospheric ULF waves are generated either directly on the dayside by solar wind dynamic pressure pulses, Kelvin-Helmholtz
surface waves, or indirectly on the nightside by mechanisms like substorms. ULF waves can play an important role in mass and
energy transport within the inner magnetosphere. It is well known that energetic particles in the inner magnetosphere can be
significantly affected by ULF waves and many studies have suggested their importance in acceleration process of radiation belt
electrons. One outstanding problem in ULF studies is to clarify their global characteristics, especially, how energy is transported
from the solar wind to the magnetosphere, and finally to the ionosphere.

We have conducted a survey of high-intensity ULF waves observed around 45 deg MLAT by the SuperDARN Hokkaido
HF radar at middle latitudes. The ULF events can be categorized into two types in terms of the solar wind velocity, i.e., high-
and low-speed solar wind events. In this study, we focus on a low-speed solar wind event on January 31, 2008 to investigate
propagation characteristics of the ULF waves based on multi-point observations from geospace to the ground. The SuperDARN
Hokkaido HF radar observed the ULF wave at 3.9mHz at about 14:40UT and at 2.6mHz at about 15:30 at MLT=02:00. In this
event, the Cluster spacecraft, located at (X,Y,Z)=(15.8,8.9,-9.4) Re in GSM coordinates, observed pressure pulses driven by the
high-density solar wind. The propagation time from Cluster to the ground (radar location) was about 400 seconds. In the mag-
netosphere, GOES-11 and GOES-12 were at 05:40 and 09:40 MLT at geosynchronous orbit, respectively. THEMIS A and D
satellites were located on the nightside at (-5.3, 3.2, -1.5) and (-7.1, -5.0, -2.4) Re, respectively. We will report characteristics of
the global propagation of the ULF waves obtained from the time delays between these observations.
Estimation of the spatial structure of the plasmasphere using a data assimilation technique

NAKANO, Shin'ya*1, FOK, Mei-Ching2*, BRANDT, Pontus3, HIGUCHI, Tomoyuki1

The plasmasphere is the region of cold dense plasma in the inner magnetosphere. The spatial structure of the plasmasphere is significantly controlled by the electric field in the inner magnetosphere. Therefore, in order to discuss the dynamics of the plasmasphere, it is important to understand the spatial distribution of the electric field in the inner magnetosphere. However, in the magnetosphere, it is basically difficult to observe the static electric field. We are developing a data assimilation technique which incorporates the imaging data of extreme ultra-violet (EUV) from the IMAGE satellite into a two-dimensional fluid model of the plasmasphere using an ensemble Kalman filter. By combining a sequence of EUV images and the dynamic model of the plasmasphere, we can estimate the spatial distribution of the electric potential as well as the plasmaspheric plasma. We will overview our approach and demonstrate some examples of the estimates obtained by this approach.

Keywords: plasmasphere, data assimilation, magnetospheric electric field
2012年2月のカナダにおけるオーロラ・VLF波動の高速観測キャンペーン（VLF-Chain）の初期結果

Preliminary report of VLF Campaign observation with High-resolution Aurora Imaging Network (VLF-Chain) over Canada

SHIOKAWA, Kazuo 1,*, 家田 章正 1, *三好 由純 1, 横山 侑 1, 野村 恵子 1, 李 星恩 1, 尾崎光紀 2, 石坂和大 2, 八木谷 聡 2, 片岡 龍峰 3, 土屋 史紀 4, 浅村 和史 5, マーチン・コーナーズ 6, イアン・スコーフィールド 6

SHIOKAWA, Kazuo 1*, IEDA, Akimasa 1, MIYOSHI, Yoshizumi 1, YOKOYAMA, Yu 1, NOMURA, Reiko 1, LEE, Sungeun 1, Mitsunori Ozaki 2, Kazumasa Ishizaka 2, YAGITANI, Satoshi 2, KATAOKA, Ryuho 5, TSUCHIYA, Fuminori 3, ASAMURA, Kazushi 5, Martin Connors 6, Ian Schofield 6

1 名古屋大学太陽地球環境研究所, 2 金沢大学, 3 東京工業大学, 4 東北大学, 5 宇宙科学研究所, 6 アサバカ大学

Solar-Terrestrial Environment Laboratory, Nagoya University, 2 Kanazawa University, 3 Tokyo Institute of Technology, 4 Tohoku University, 5 Institute of Space and Astronautical Science, 6 Athabasca University

VLF/ELF帯のホイッスラー波動は、特にディフィューズオーロラを光させる10keV以上の高エネルギー電子や、MeVエネルギーに至る放射線帯電荷と、磁気圏の赤道面近付近で相互作用して、粒子のピッチ角散乱や加速を引き起こすことが理論的に予想されている。このような波動粒子相互作用は、ULF帯の波動とあわせて、パルセイティングオーロラやフリッカリングオーロラなど、0.1-10Hzのオーロラ変動の原因に関連していると考えられている。しかし、高時間分解能のデータを用いたオーロラ画像、VLF/ELF/ULF波動の波形、ソースとなる磁気圏・電離層での衛星観測の比較はこれまでほとんど行われっていない。そこで私たちは、2012年2月16-26日にカナダ・アルバータ州のAthabasca(54.72N, 246.69E, MLAT=61.3)およびFort Vermillion(58.38N, 243.99E, MLAT=64.5)で、ループアンテナと遠距離のオーロラ観測カメラを設置し、既存の誘導磁力計とも組み合わせて、これまでにない最高時間分解能のオーロラ画像とVLF/ELF/ULF波動の同時観測キャンペーンを行う。ループアンテナは100kHzサンプリングで東西・南北の磁界成分を常時観測し、GPS受信器から発生する1秒パルスを使って正確な時刻同期を行う。また、オーロラ観測には、ビデオレート（30Hzサンプリング）の可視域全天カメラを両観測点に設置し、オーロラの高速撮影を行うとともに、BG3フィルターを取り付けた狭帯域のEMCCDカメラをAthabascaから北のFort Vermillionに向けて100Hzで画像を撮影し、パルセイティングオーロラの高速変動を検出観測する。この光学観測も、GPS受信器の1秒パルスによるLEDの光信号を使って時刻同期を行う。さらに、狭帯域の小型CCDカメラや、Athabascaに既存の誘導磁力計、プロトンフォトメータ、夜間大気観測用の高感度全天冷却CCDカメラ、LF帯標準電波受信器などを組み合わせ、上空を飛翔するTHEMIS衛星、行われい衛星、NOAA衛星、DMSP衛星などのデータも合わせて、オーロラ帯からサブオーロラ帯にかけてのVLF/ELF/ULF波動の観測を行った。観測では、これらのキャンペーンの初期結果を報告する。

キーワード: ホイッスラー波動、パルセイティングオーロラ、Pc1地磁気脈動、波動粒子相互作用、サブオーロラ帯、地上観測

Keywords: whistler-mode waves, pulsating aurora, Pc1 geomagnetic pulsations, wave-particle interaction, subauroral latitudes, ground-based observation
Rising tone chorus emissions without a gap at half the gyrofrequency observed on THEMIS

KURITA, Satoshi 1*, KA TOH, Yuto 2, OMURA, Yoshiharu 3, MISAWA, Hiroaki 1

1 Tohoku Univ., 2 Geophysics, Sci, Tohoku Univ., 3 RISH, Kyoto Univ.

Whistler-mode chorus emissions often consist of discrete rising tone elements in the typical frequency range from 0.1 to 0.8 fce with a gap at 0.5 fce, where fce is the equatorial electron gyrofrequency. The emissions below and above 0.5 fce are called lower- and upper-band chorus emissions, respectively. Based on the duct propagation characteristics of whistler-mode waves, Bell et al. [2009] showed that the gap at 0.5 fce can be formed if the lower- and upper-band chorus waves are generated within the enhanced and depleted plasma density region, respectively. While Omura et al. [2009] has suggested that a rising tone chorus element is once generated near the magnetic equator through the nonlinear wave growth mechanism in the purely parallel direction, and that the gap at 0.5 fce is formed by the nonlinear wave damping effect during its propagation away from the equator with a slightly oblique wave normal angle, resulting in the separation of the chorus element into the lower-band and upper-band chorus emissions. Based on the nonlinear wave growth mechanism, chorus emissions without a gap at 0.5 fce are expected to be observed in the source region. In this presentation, we report the presence of rising tone chorus emissions without the gap at 0.5 fce observed by the searchcoil magnetometer (SCM) onboard the THEMIS spacecraft. The propagation angles of the chorus emissions are almost along the background magnetic field in the entire frequency range, indicating that the chorus emissions are observed in the source region. The frequency sweep rates are estimated based on the nonlinear wave growth theory using the observed wave amplitudes and plasma parameters during the observation. We compare them with the instantaneous frequency variation of the elements derived from the SCM data and show that the estimated sweep rates well agree with the observed frequency variations. Furthermore, the frequency profiles of the wave amplitude of the elements are compared with the optimum amplitude proposed by Omura and Nunn [2011]. The comparison shows reasonable agreement between the theory and the observations. These results provide strong observational evidence of the nonlinear wave growth mechanism for the generation of rising tone chorus emissions.

Keywords: whistler-mode chorus, inner magnetosphere, wave-particle interaction
Seasonal variations of Saturn’s auroral acceleration region deduced from spectra of auroral radio emissions

Morioka et al. [in press] investigated the spatial distribution of the auroral acceleration region along polar magnetic field lines based on spectra of the terrestrial auroral kilometric radiation (AKR). By application of this approach to Saturn, we deduced the height distribution of the auroral acceleration region in the northern and southern hemispheres from SKR spectra acquired during 2004 to 2010. It was found that the southern (summer) SKR spectral density was 10 dB greater at the peak altitude (\approx 0.9Rs) on average, and harder than in the northern (winter) hemisphere. In addition, the southern and northern spectral densities became comparable with each other around equinox. These results suggest stronger field aligned acceleration and current in the southern hemisphere than north depending on season. The main infrared (H3+) auroral oval in IR was similarly more intense in the southern summer hemisphere than in the north [Badman et al. 2011]. Badman et al. [2011] suggested that greater conductivity in the southern polar ionosphere could result in greater precipitating electron flux and/or Joule heating, which are responsible for the stronger southern IR auroral emissions. The north-south asymmetric acceleration region deduced from SKR will be further compared with ionospheric and magnetospheric parameters (e.g., electron density, temperature, conductivity). Finally, comparative discussions of M-I coupling process between Saturn and Earth will also be presented.

Keywords: magnetosphere-ionosphere coupling, Saturn, aurora, radio emissions

KIMURA, Tomoki\(^{1,}\), LAMY, Laurent\(^{2,}\), TAO, Chihiro\(^{1,}\), BADMAN, Sarah V.\(^{1,}\), CECCONI, Baptiste\(^{2,}\), ZARKA, Philippe\(^{2,}\), MORIOKA, Akira\(^{3,}\), MIYOSHI, Yoshizumi\(^{4,}\), KASABA, Y asumasa\(^{3,}\), MARUNO, Daichi\(^{3,}\), FUJIMOTO, Masaki\(^{1,}\)

1.宇宙航空研究開発機構宇宙科学研究所, 2. LESIA, Paris Observatory, 3. Graduate school of science, Tohoku University, 4. Solar Terrestrial Environment Laboratory, Nagoya University
inverted-V 加速域の UT コントロール
Universal time control of inverted-V acceleration

森岡 昭 1*, 三好 由純 2, 栞田 棟 1, 笠羽 康正 3
MORIOKA, Akira 1*, MIYOSHI, Yoshizumi 2, KURITA, Satoshi 1, KASABA, Yasumasa 3

1 東北大・理・惑星プラズマ大気, 2 名古屋大学太陽地球環境研究所, 3 東北大・理・地物

It has been demonstrated that the spectral behavior of auroral kilometric radiation (AKR) exhibits structure and dynamical evolution of auroral acceleration region along the field line. The auroral acceleration process at substorm onset, revealed from the AKR spectral analyses, showed basically two stages: (1) appearance/intensification of a low-altitude acceleration region at 4000-6000 km accompanied by initial brightening and (2) breakout of high-altitude field-aligned acceleration above the pre-existing low-altitude acceleration region at 6000-12,000 km, which is followed by auroral breakup and poleward expansion.

The former (low-altitude acceleration region) corresponds to so-called inverted-V acceleration, and it appears not only at substorm time but also during the day. We show, in the present study, that the altitude of the inverted-V acceleration varies systematically during a day, that is, UT variation. The systematic variation changes its phase of 180° around equinox. The possible cause of the altitude variation and its phase change can be (1) ionospheric origin due to daily variation of solar illumination in the polar region and/or (2) magnetospheric origin due to the rocking motion of the geomagnetic field in the magnetosphere. In the presentation, the evaluation of these possibilities will be given.

キーワード: inverted-V 加速域, オーロラ, M-I カップリング, サブストーム, UT コントロール, AKR
Keywords: inverted-V acceleration region, aurora, M-I coupling region, substorm, UT control, AKR
オーロラで観測した地球向き高速流の分岐
Aurora surge at poleward boundary of aurora zone related to Pi2-associated bi-directional flows

坂 翁介 1*, 林 幹治 2
Saka, Osuke 1*, Kanji Hayashi 2

1 オフィス ジオフィジク, 2 東京大学
1 Office Geophysik, University of Tokyo

Pi2 開始以来の時間経過を軸にして静止衛星磁場およびプラズマデータを統計的に調べ、夜側磁気圏で地球向き高速流が分岐するという結果を得ていた (1)。分岐流の存在を裏付ける特徴がオーロラの中に認められたので報告する (2)。

観測結果を繰めると、
（1）細長いアークに沿って東あるいは西へ伝播する Poleward Surgeが磁気経度68 - 74度に観測される。
（2）サージは Pi2の周期で繰り返している。
（3）サージの伝播方向に依存した Pi2 偏波（CW/CCW）が観測された。
（4）複数のサージが隣り合ったセクターで発生している。

以上の観測結果から得た結論は、
（1） Pi2 偏波（CW/CCW）は内部磁気圏の外側境界を通過する分岐流の影響である。
（2）分岐流中に生じる Ballooning-Interchange 不安定等の磁力線 Tensionの不安定性が Poleward surgeの原因である。
（3）分岐流の繰り返しの原因は FLR（磁力線共鳴）に関係するものではない。

(1) First 10 min intervals of Pi2 onset at geosynchronous altitudes during the expansion of energetic ion regions in the nighttime sector (Saka, Hayashi, Thomsen, JASTP, 2010)
(2) Periodic aurora surge propagating eastward/westward at poleward boundary of aurora zone during the first 10 min intervals of Pi2 onset (Saka, Hayashi, Koga, JASTP, 2012).

キーワード: オーロラ, 地球向き高速流分岐、Pi2
Keywords: Aurora, Diversion of fast earthward flow, Pi2
We have carried out ground-based observations optimized to temporal and spatial characteristics of pulsating auroras (PAs) in micro-meso scale, using an Electron Multiplying Charge Coupled Device (EMCCD) camera with a narrow field of view corresponding to 100km x 100km at altitude of 110 km and high sampling rate up to 100 frames per second. Transient pulsating auroras propagating southward around 1100 UT, in early recovery phase of the substorm, on 4 March 2011 are focused on in this paper. Three independent PAs (PA1-3) with each different periods between 4 and 7s were observed by our EMCCD camera, which means that the periodicity was not bounce motion and strongly depended on local plasma conditions in the magnetosphere, corresponding to 2300 km x 2300 km, or the ionosphere. One more insight is that only PA1 had also a sharp peak of modulations around 1.5 Hz, with a narrow frequency width of 0.30 Hz. In addition, the strong modulations existed as a small spot in the center of PA1, and the spatial distributions of modulations were presented for the first time in this work. We also conducted cross spectrum analysis and obtained coherence and phase maps for auroral variations between 0.1 and 3.0 Hz in order to investigate and quantify the dynamics inside pulsating auroras. The results indicated that low frequency variations from 0.2 to 0.5 Hz inside PA1-3 propagated as a group of flows in the particular directions. The estimated flow velocities were ranged from 80 to 150 km/s at the auroral altitude, corresponding to between 1800 and 3500 km/s at the magnetic equator.

Keywords: Inner magnetosphere, Aurora, Substorm, Wave-particle interactions, Ground observations