The results of groundwater studies and the future plan in the Horonobe coastal area.

IKAWA, Reo¹⁺, MACHIDA, Isao¹, KOSHIGAI, Masaru¹, Seiji Nishizaki², MARUI, Atsunao¹

¹Geological Survey of Japan, AIST; ²NIPPON KOEI CO.,LTD

On the new utilization methods of underground space development such as geological disposal of high level radioactive waste (HLW) and CO2 sequestration or carbon capture and storage (CCS), groundwater study is very important to evaluate the underground environments. It is difficult to obtain physical data in sedimentary rock with low permeability, because the groundwater velocity degradation was caused by a rock pressure increase associated with the depth increases. Geochemical data is significant to understand the groundwater flow conditions, groundwater source, and residence time. However, in situ groundwater sampling is very difficult because of the sampling schedule, cost, and technical requirements. In such a case, it is clearly that the application of pore water with the same chemistry as groundwater is efficient to estimate the groundwater environment. In our study, one thousand meter borehole was drilled in the Hamasato area at Horonobe town, Hokkaido prif, and various groundwater studies by the application of pore water were conducted to understand the groundwater hydrology in a coastal area. As the results of these studies, existence of five hydrological units was confirmed in this area and existence of freshwater under the seabed was also found by geophysical exploration. Furthermore, a number of knowledge for the pore water extraction and water chemistry analytical methods were also obtained.

In the presentation, we will report the result of these groundwater studies and introduce the future plan based on the results of studies.

Keywords: Coastal area, Pore water, Deep groundwater, Low permeability sedimentary rock
Numerical analysis of groundwater flow system under the seabed accompanying sea level fluctuations

KOHARA, Naoki1, MARUI, Atsunao2

Coastal area is one of the promising places for geological disposal due to scientific and social aspects. Developments of investigation and evaluation method to interpret coastal environment are needed because there are a lot of uncertainties remaining to understand the hydrogeological environment in there. Long-term geological variations such as climate variation and sea level fluctuations will lead to great changes of groundwater flow environment under the seabed especially in shallow sea area. It is believed that the prediction of future groundwater flow process is necessary for evaluation of geological environment stability.

There is a report that fresh paleo-water under the seabed was discovered on the continental shelf away from a present coastline in many parts of the world (ex. Horonobe coastal area), because recently investigation technology has been improving. That is the proof that a complex mixing and diffusion among seawater and groundwater and meteoric water was happened. Prediction of future groundwater flow environment can be better interpreted by constructing the groundwater flow model of long-term behavior like a natural analog.

The purpose of this study is to find out the long-term groundwater flow processes at Horonobe coastal area and Iwaki coastal area through the sensitivity and scoping analysis using site-scaled numerical modeling. Transient boundary condition is better than static boundary condition for evaluation of the distribution of the groundwater flow under the seabed. Many cases indicated that remnants of fresh groundwater which was infiltrated and became trapped in shelf sediments may be occurred. Groundwater under the seabed may be washed out due to sea level fluctuations with each cycle, so that it is NOT safe for the radioactive waste repository. This method to evaluate groundwater flow system under the seabed contributes effectively research plan such as offshore boring, electromagnetic investigation.

Keywords: under the seabed, groundwater flow, sea level fluctuation, numerical simulation, density flow, groundwater age
Correlating permeability with fracture property and hydrothermal alteration intensity of Toki granite samples

KASHIWAYA, Kouki1, Takurou HAMADA1, Taiki KUBO2, Tohru YOSHINAGA3, KOIKE, Katsuaki2

1Graduate School of Science and Technology, Kumamoto University, 2Graduate School of Engineering, Kyoto University, 3Technical division, Faculty of Engineering, Kumamoto University

Information on spatial distribution of permeability is essential to estimate groundwater flow in rock mass with a high degree of accuracy. Permeability of Toki granite samples was measured using permeameter in this study and space distribution and anisotropy of the permeability in rock core scale was shown. Correlation of permeability with fracture property and alteration intensity was discussed.

Samples are boring cores of Toki granite. Vertical sample is a core collected at borehole MIZ-1, excavated by Japan Atomic Energy Agency (hereafter JAEA) at Mizunami, Gifu prefecture, Japan. Horizontal sample consists of 30 cores collected at borehole 10MI22 and 10MI23, excavated in drift of Mizunami Underground Research Laboratory of JAEA.

Macroscopic fracture separates the vertical sample from contiguous part. To reveal relationship between permeability and distance from the macroscopic fracture, and to reveal relationship between permeability and azimuth direction (anisotropy), air permeability of 16 directions was measured in plane perpendicular to core axis. For the horizontal samples, permeability was measured at three points of 2.0cm from both ends and midpoint along core axis. Nitrogen gas injection type permeameter (TEMCO Inc., MP-401) was used for the measurement.

Image analysis was carried out to characterize fracture property of microcracks and mesocracks. Fracture image was prepared by tracing microcracks observed in thin section. Fracture image for mesocrack was traced from core surface image taken with fluorescent method. Fracture number, length and angle of each fracture, number of crossed point, were collected by image analysis.

The horizontal samples show various degrees of alteration and are classified as intact, fractured part, faulting part, and altered part based on criteria by JAEA. Powder X-ray diffraction analysis (XRD) and fluorescent X-ray analysis were employed to consider relationship between permeability and alteration intensity.

In permeability measurement of the vertical sample, permeability was larger at points near the macroscopic fracture and decreased with increase in the distance from the fracture. Additionally, permeability was larger in NE-SW direction and NW-SE direction.

Image analysis of microcrack showed that longer crack exists near the macroscopic fracture and that the fractures make network considering the number of crossing point. Dominant orientation of microcrack was NE-SW and NW-SE. Similar results were obtained in the mesocrack analysis, and fracture number and number of crossing point increased near the macroscopic fracture plane. Dominant orientations of mesocrack were NE-SW and NW-SE.

Dominant direction of fracture was similar between microcrack and mesocrack, and fractures observed in different scale have similar orientation. This direction is consistent with one where permeability is large, and it means that fracture orientation rules anisotropy of permeability.

Maximum compressive direction in deeper part than 250m beneath the surface around MIZ-1 is known to be NW-SE[1]. Anisotropy in permeability and fracture orientation shown in this study was consistent with the compressive direction in this area. This stress field may cause the fracture orientation and anisotropy of permeability.

Results of XRF analysis showed that Ca concentration varied depending on alteration intensity. Therefore, Ca concentration was used as index of hydrothermal alteration, and correlation with permeability was considered. Intact sample, whose Ca concentration is low, was relatively impermeable, and fractured part sample, whose Ca concentration was high, was relatively permeable. These results indicate that relatively strong hydrothermal alteration proceeded in more permeable part because hydrothermal solution can circulate easily in such permeable part.

Keywords: Permeability, Permeameter, Toki granite, Fracture property, Hydrothermal alteration, Anisotropy
Smectitic Alterations in Drill Cores obtained from the campus of Tokai University, Hiratsuka, Kanagawa Prefecture

ETO, Jiro1, ISHII, Tomoko1, OWADA, Hitoshi1, SATOH, Hisao2, YAMAGUCHI, Kohei2, OHE, Toshiaki3

1Radioactive Waste Management Funding and Research Center, 2Mitsubishi Materials Corporation, 3Tokai University

In the geological disposal of radioactive waste, cementitious materials and bentonite, which contains smectite as a major mineral component, are to be used as part of the engineered barrier system. Natural analogues of the reactions between cementitious materials and bentonite have been studied to understand reactions on the timescale of tens of thousands of years and longer. Drill cores were obtained from the campus of Tokai University in Hiratsuka, Kanagawa Prefecture, for a natural analogue study of smectitic alterations in the calcium-rich water released by cementitious materials.

A sandy tuff with smectite was observed in drill cores from depths of 239.7 to 250 m, the deepest of the drill cores. Foraminifera microfossils were found in the sandy tuff, suggesting that the tuff was deposited under the sea. Fission-track and uranium-lead dating of the zircon in the sandy tuff were performed to obtain ages of ca. 10 Ma, and thus, it was estimated that the sandy tuff was deposited at or later than ca. 10 Ma. The altitude of the drilling location was assumed to have come above sea level at ca. 0.13 Ma (Oka, 1980), and so the sandy tuff was thought to have been under the sea for a maximum period of ca. tens of millions of years.

Two types of smectite were observed coexisting with zeolite in the sandy tuff, suggesting that two different types of smectite were formed in at least two different periods.

a) Smectite formed as a result of zeolite alteration: Electron probe micro-analysis (EPMA) indicated that the smectite belonged to dioctahedral montmorillonite. The oxygen-isotope geothermometer, obtained from the isotopic equilibrium of stable oxygen isotopes in the smectite and the coexisting zeolite, indicated temperatures ca. 40 degrees C.

b) Smectite with calcite: Both minerals are included in the zeolite crystal, and EPMA indicated that the smectite was trioctahedral saponite. The oxygen-isotope geothermometer indicated temperatures ca. 165 degrees C.

The chemical compositions of smectite and plagioclase in the sandy tuff were analyzed using EPMA. The results show that variations of Ca/(Ca+Na) at different depths were similar in the smectite and the plagioclase, and suggested that a possible source of the calcium in the smectite was from the dissolution of the plagioclase.

A numerical analysis of long-term alteration was performed to examine whether the mineral composition of the sandy tuff could be explained by calculations based on thermodynamic data. In this analysis, a hypothetical mineral composition calculated based on the chemical composition of non-altered rock near the drilling location was used as the starting material, with seawater as the reacting fluid. The deposit of only Na-type montmorillonite was permitted, and the number of sites for ion exchange was decided by the amount of Na-type montmorillonite. Other types of montmorillonite including Ca, K and Mg, were formed in the exchange of ions between the reacting fluid and each type, based on the selectivity coefficient for ion-exchange reactions.

From the numerical analysis, it was found that the mineral composition became stable after ca. 10 000 years. The mineral composition resulting from the analysis included Ca-type montmorillonite and saponite as the dominant smectites, followed by Na-type montmorillonite and saponite. The above sequence of smectites was coincident with the sequence observed in the sandy tuff. The concentrations of each element in the reaction fluid in these results were coincident with the measured concentrations of the water in a hot spring near the drilling location, showing differences within two orders of magnitude.

ACKNOWLEDGMENTS

This research is a part of "Evaluation Experiments of Long-Term Performance of Engineered Barriers FY2011" under a grant from the Agency of Natural Resources and Energy, the Japanese Ministry of Economy, Trade and Industry.

Reference

Keywords: radioactive waste, geological disposal, natural analogues, bentonite, smectite, alteration
Development of new evaluation technique of long term geomechanical interaction between bedrock and buffer in near-field

NISHIMOTO, Soshi1, Tetsuji Okada1, Masataka Sawada1

1Central Research Institute of Electric Power Industry

The objective of this paper is to evaluate a long term behavior which is a coupled thermo-hydro-mechanical processes in the near-field of a geological repository for high-level radioactive waste (HLW) disposal by the centrifugal model test. To clarify the long term behavior in the near-field, the researches by the full-scale test and the numerical analysis have been carried out. The numerical study is able to evaluate the long-term behavior in near-field. For a verification of applicability of numerical model, however, it is difficult to conduct a long-term full-scale test due to a place, time, and economic restraint. If the experiment of the small model of near-field based on the centrifugal scaling law that can supplement these problems becomes possible, a long term reliability of the disposal repository can be improved by acquiring the empirical laboratory data.

The model specimen consists of a cylindrical rock mass (Tage tuff) of 180 mm in a diameter and length, bentonite buffer (Kunigel-V1) and model overpack (SUS). The borehole (disposal pit) of 57 mm in a diameter and 127 mm in a height was drilled at the center of the rock mass. These are the size of 1/30 proposed in the report of CRIEPI & FEPC (1999). The model specimen in the study was enclosed with the pressure vessel, and centrifugal model tests were conducted at 30 G of centrifugal force field in isotropic stress-state conditions with confining pressures of 2 to 10 MPa and injecting water from the bottom of model specimen. The centrifugal tests were conducted up to two months (165 equivalent years in conversion time of full-scale).

As results, a slight settlement due to self-weight in the displacement of the model overpack was measured after injecting water. After that, the model overpack heaved rapidly and a maximal was measured, and then, the overpack tended to a gradual settlement. The value of heave was several times as large as the settlement. The soil pressure of buffer did not occur until the buffer absorbed water and began to swell, and increased rapidly swelling begins. Then, it tended to a gradual decrease after a maximal was measured. In terms of the maximal of displacement of overpack and soil pressure of buffer, these value were obviously different depending on the confining pressure (confining pressure dependency). In addition, these measured values after the maximal in this study were not converged even after up to two months in test-time (time dependency). These behaviors are distinctly different from the results of previous centrifugal model test (Nakamura & Tanaka, 2009) in a strain-state condition using a stainless steel test vessel which the values have converged in about 50 to 70 equivalent years. Thus, we first revealed experimentally that a long term behavior in the near-field was changed by geomechanical interaction between the deformation of bedrock (disposal hole) and swelling behavior of buffer depending on earth pressure, and did not converge even in the long term experiments by the interaction.

Keywords: High-level radioactive waste disposal repository, Near-field, Centrifugal model test, Long term behavior, Geomechanical interaction
Redox buffering of host rock and its suitable repository depth

YOSHIDA, Hidekazu\(^1\), YAMAMOTO, Koshi\(^1\)

\(^1\)Nagoya University

Buffering capacity of underground environment is one of the important function for geological disposal of radioactive waste. This paper will be discuss about the suitable depth in terms of buffering capacity of geological environment.

Keywords: Underground environment, Redox processes, Buffering capacity, disposal depth
Approaches to quantitative determination of surface erosion rates

SHIROYA, Kazuyo1*, ITOH, Jun'ichi1, OTSUBO, Makoto1

1Geological survey of Japan, AIST

It is needed to evaluate surface erosion rates for landform evolution. However, at present, appropriate methods for quantitative determination of long-term (100000-1000000 yr) erosion rates have not been established in Japan. We will refer problems attributable to previous methods for determination of surface erosion rates and introduce in situ cosmogenic nuclides as a new powerful and useful approach in this presentation.

A part of this research project has been conducted as the regulatory supporting research funded by the Japan Nuclear Energy Safety Organization (JNES), an incorporated administrative agency, Japan.

Keywords: erosion rate, in situ Terrestrial Cosmogenic Nuclide, depth profile
Uncertainty in the temporal scale on earthquake and fault activity

OTSUBO, Makoto1, **, TONAI, Satoshi1, ITOH, Jun'ichi1

1Geological Survey of Japan/AIST

It is needed to evaluate stability of landform surfaces for the Geological Disposal of Radioactive Waste. It takes several 10^5-10^6 years for Nuclides indicated as high-level radioactive waste to get into equal to its abundance in nature. Therefore, notably, long-term (10^5-10^6 year) earthquake and fault activity is important consideration in the evaluation of surface stability to prevent radioactive waste from accessing near surfaces. We discuss about the uncertainty in the temporal scale on earthquake and fault activity.

A part of this research project has been conducted as the regulatory supporting research funded by the Japan Nuclear Energy Safety Organization (JNES), an incorporated administrative agency, Japan.

Keywords: Geological disposal, Earthquake, Fault, Stress, Groundwater Flow System
Stress field analysis around faults for the safety assessment of reactivation of pre-existing faults

TONAI, Satoshi1*, OTSUBO, Makoto1, ITOH, Jum’ichi1

1Geological Survey of Japan, AIST

The safety assessment of reactivation of pre-existing faults is necessary for preliminary field investigations of HLW geological disposals (Research Center for Deep Geological Environments, editor, 2007). Slip tendency analysis (Morris et al., 1996) is considered of value for evaluating the likelihood of reactivation of multiple pre-existing planes under a uniform stress state. However, the principal stresses may rotate due to damage zone (Caine et al., 1996) surrounding faults (e.g., Rice, 1992). Thus, understanding stress field around faults are important for slip tendency analysis.

We applied a stress inversion method to the fault-slip data from the Atera fault system in Kawakami area. In this area, about 40 m width damage zone develop around the fault system (Niwa et al., 2009). For calculation, we mainly used fault-slip data reported by Tonai et al. (2011).

The calculation of multiple inverse method (Yamaji, 2000) resulted in a strike-slip faulting stress regime with a E-W (N-S) trending sigma1 (sigma3) axis for fault-slip data obtained from near the main fault plane, a strike-slip faulting stress regime with ENE-WSW (NNW-SSE) trending sigma1 (sigma3) axis for fault-slip data obtained apart from the main fault plane, and a stress regime with NW-SE trending sigma1 axis for fault-slip data from host rock around the main fault.

The result probably shows that the stress field around the main fault of the Atera fault system is heterogenous. It is possible that the damage zone surrounding faults is affected such stress field. In addition to stress field analysis with high space resolution, comparative consideration between several fault systems is important for the understanding of the role of damage zone for stress field around faults.

A part of this research project has been conducted as the regulatory supporting research funded by the Nuclear and Industrial Safety Agency (NISA), Ministry of Economy, Trade and Industry (METI), Japan.

References
Caine, J. S. et al., 1996, Geology, 24, 1025-1028.
Morris, A. et al., 1996, Geology, 24, 275-278.
Niwa, M. et al., 2009, Island Arc, 18, 577-598.

Keywords: stress inversion, damage zone, fault, the Atera fault system
Time-scale of uncertainty on long-term forecasting for volcanic activities in Japan

YAMAMOTO, Takahiro1, ITOH, Jun’ichi1, MIYAGI, Isoji1

1Geological Survey of Japan, AIST

In the forecast of volcanic activities for geological disposal, the foundation will be to clarify the trends of the geological history for the activities that occurred in the assessment area, and to extrapolate this into the future. The Quaternary volcanoes are not distributed evenly throughout the Japan Islands, and their presences are determined by the plate arrangements. This means that the Quaternary volcanoes of the Japan Islands are most densely distributed on the volcanic front located 200˜300 km away from the subduction boundary of the plates toward the plates on the landside, and there is no volcano in the fore-arc region. Also there is a significant tendency where the volcano distribution becomes sparse in the area distant from the back-arc side or area opposite the volcanic front. However, the migration history of the volcanic front differs in individual subduction-arc systems. In evaluating the volcanic activities, it is necessary to understand the conditions of magma generation that is the origin of the volcanic front, in accordance to the spatiotemporal changes of the activity region.

Keywords: volcanic activity, geological disposal, long-term forecasting
Geological prediction and tectonically linear continuity based on geomorphic development model

UMEDA, Koji¹, TANIKAWA, Shin-ichi¹, YASUE, Ken-ichi¹

¹Japan Atomic Energy Agency

Geological prediction and tectonically linear continuity based on geomorphic development model
Characteristics of fracture and fracture fillings in sedimentary rocks-Example of Shimanto belt, Eastern part of Kyusyu-

OSHIMA, Akihiro¹, YOSHIDA, Hidekazu², Yukihsa Nishizono¹

¹West Japan Engineering Consultants, Inc., ²Nagoya University Museum

The long-term behavior of underground environment is important in geological disposal systems for radioactive waste, underground storage of CO₂ and liquefied petroleum gas (LPG). Fracture, fracture fillings and redox front have been studied for this evaluation (ex. Yoshida et al., 2004). However, the most of previous papers have been discussed to igneous rocks such as granite.

In this study, those characteristics are investigated in drilling core of Paleogene sedimentary rocks, Shimanto belt distributed at eastern part of Kyushu district.

The depth of drilling core is 120m, and is coherent sequence of accretionary prism which mainly consists of sandstone and shale. Fractures are defined as the discontinuity planes of the drilling core in this study. Redox front is formed with minerals oxidized by permeation of oxidative groundwater (Berner, 1981; Hoffman, 1999). Drilling core observation shows that brown colored rock is oxidized zone, and except for one is host rock zone. The boundary of both is recognized as the redox front. Fractures have characters such as brown colored alteration or mineral filling. Those are classified into the following two types based on the occurrence of fracture fillings and contact condition.

Type A sealed by filling mineral partially, and is easily separated along the fracture planes.

Type B sealed by filling mineral perfectly, and is contacted tightly together.

Type A fracture generally exists in all depth, and brown colored alteration along the fracture surface is remarkable in the depth of 0-60m. In the depth of 60-120m, that is filled by carbonate mineral which is patchy or euhedral shaped. Type B fracture frequency exists in the depth of 60-120m.

Oxidized zone distributes along the fracture in the depth of 0-35m. In this range, the rocks including of fractures are almost altered in brown color. The flesh host rock is rare. Around the depth of 35-50m, brown colored alteration is restricted to fracture surface only, and whole rock alteration is rare. Only a part of fracture surfaces are altered with depth deeper than 60 meters. This alteration is probably due to iron hydroxide occurred by the oxidative groundwater permeated.

Fracture filling minerals are iron hydroxide, calcite, ankerite and pyrite. Calcite and quartz mainly exist deeper than oxidized zone. Ankerite is frequency produced around shale.

In this presentation, we discuss the movement of elements and microstructure of minerals based on the data of chemical analysis and microscopic observation. Furthermore, the relation among the water permeability of a base rock, fracture and fracture filling mineral is also considered.

Keywords: fracture, fracture fillings, redox front, sedimentary rock
Characterization of flow-path structure at the deep geological environment-A case study of Toki granite-

ISHIBASHI, Masayuki1,*, Tadahiko Tsuruta1, Yuguchi Takashi1, NISHIMOTO, Shoji2, SASAO, Eiji1, YOSHIDA, Hidekazu3

1Japan Atomic Energy Agency Tono Geoscientific Research Unit, 2Nagoya City Science Museum, 3Nagoya University Museum

In order to evaluate deep geological environment for geological disposal of high level radioactive waste (HLW), understanding water conducting features such as flow-path fractures are important. We report the character of flow-path fractures at the -300m levels of Mizunami Underground research laboratory (MIU). Flow-path fractures occupy about 11% of all fractures at the -300m level.

At the MIU site, wall rock alteration around fractures is estimated to control water conductivity along fractures. We will describe the alteration characters and fracture-fillings and then characterize water-conducting fractures in future study.

Keywords: flow-path fractures, Toki granite
Development of hydrologic characterization technology of fault zones: field validation of methodology

GOTO, Junichi¹, Toshifumi Moriya¹, Kimitaka Yoshimura¹, Seiichiro Murano¹, Hiroyuki Tsuchi¹, Kenzi Karasaki², Kenzo Kiho³

¹NUMO, ²LBNL, ³CRIEPI

The Nuclear Waste Management Organization of Japan (NUMO) will select a site for HLW and TRU waste repository through the three-staged program, namely, the Literature Surveys, the Preliminary Investigations and the Detailed Investigations. Areas that are susceptible to natural hazards such as volcanism, faulting and significant uplift/erosion will be eliminated at first. Then, sites that have more favorable geological environment will be selected with respect to the repository design and long-term safety after closure. It is internationally acknowledged that hydrologic features of faults are of special concern in the above respects. It is highly likely from the experiences of site characterization worldwide that one could encounter numerous faults in an area of one hundred square kilometer assumed for the Preliminary Investigations. Efficient and practical investigation programs, and reliable models/parameters for the repository design and safety analysis are important aspects for implementers. A comprehensive methodology including strategies and procedures for characterizing such faults should thus be prepared prior to the actual investigations. Surveys on the results of site characterization in the world indicate potential relevance of geological features of faults such as host lithology, geometry, slip direction, internal structure and alteration to the fault hydrology. Therefore, NUMO, in collaboration with Lawrence Berkeley National Laboratory (LBNL), started a 5-year project in 2007 involving field investigations to develop a comprehensive methodology for hydrologic characterization of faults, with emphasis on the relationship between geological and hydrologic features of faults. A series of field investigations including ground geophysics, geological mapping, trench surveys, borehole investigations, hydrochemical analyses and hydrologic monitoring have been carried out on the Wildcat Fault that runs along the Berkeley Hills, California. The project will be completed by the end of this year to compile all the results into a comprehensive methodology.

Keywords: fault, hydrology, groundwater, geological disposal, site characterization, repository siting
Sorption analysis of Cesium and Iodide ions on un-weathered Pumic Tuff

RAJIB, Mohammad¹*, Takayuki Sasaki²

¹Graduate School of Science and Engineering, Saitama University, ²Department of Nuclear Engineering, Kyoto University

Understanding and modeling of the sorption behavior onto the host rock under various groundwater conditions are indispensable in the reliable safety assessment of radioactive waste disposal. Pumice tuff has been considered as a potential host rock for geological disposal of radioactive waste. As such, sorption mechanism of two very important nuclides, Cesium (Cs) and Iodine (I), on the pumice tuff under various subsurface geochemical environment e.g. the influence of pH, ionic strength, and the initial concentrations on the sorption of Cs and I on tuff and pumice isolated from the original, unweathered pumice tuff rock was investigated by batch method at an aging period of about 10 weeks. It was observed that for both rocks, the proton concentration has little effect on the distribution coefficient, K_d values for Cs in the pH range 3?10. As the ionic strength of the solution increases in the presence of sodium perchlorate as a matrix ion, the K_d value of cesium apparently decreases, reflecting the competition of the electrolyte Na⁺ with the specific sorption of Cs⁺ on the negatively charged sites. In contrast, no significant dependence of ionic strength on the K_d of anionic iodine was found. A simple surface complexation model without considering electrostatic works was applied to simulate the sorption of ions on rocks, and the model parameters were determined. The K_d values at the given chemical conditions were estimated using the parameters and compared with the ones in the literature.

Keywords: Cesium, Iodide, Sorption, Surface complexation model, Tuff, Pumice
A case for systematization of coastal geological environments

MATSUZAKI, Tatsuji1,*, IWATSUKI, Teruki1, NIIZATO, Tadafumi1, TOKIWA, Tetsuya1, OHYAMA, Takuya1, YABUUCHI, Satoshi1

1Japan atomic energy agency

Keywords: geological disposal, preliminary investigation, planning method, site descriptive model, coastal zone
Present state and future challenges of deep all-core drilling in coastal zones

KOSHIGAI, Masaru1*, YOSHIOKA, Masamitsu2, MARUI, Atsunao1

1Geological Survey of Japan, AIST, 2Suncoh Consultants Co., Ltd.

Information on the geological environment of a region is essential for designing urban infrastructure, selecting industrial locations, devising disaster plans, etc. Recently, interest in such geological information for regions at a depth of over several 100 m has been rising because such information is useful for the utilization of underground spaces and the exploration of undeveloped natural resources. All-core drilling and core analysis are necessary to obtain information on subsurface geological environments. However, many technological challenges exist in the deep all-core drilling of sedimentary soft rocks, which are thickly distributed in coastal zones, where economic and social activities are concentrated. Herein, we review some previous studies and report the present state and future challenges of deep all-core drilling in coastal zones.

Keywords: Deep all-core drilling, Coastal area, Sedimentary soft rocks
Characterization of mass transport based on in-situ crosshole tracer tests in a sedimentary rock

YOKOTA, Hideharu1*, YAMAMOTO, Youichi1, TANAKA, Shingo1

1Japan Atomic Energy Agency

For performance assessing the geological disposal of high-level radioactive waste, it is important to appropriately understand characteristics of mass transport into the hostrock as natural barrier. Therefore, it is need to obtain various parameters contributing for advection, dispersion, and diffusion into the hostrock by carrying out in-situ tracer tests.

On the Horonobe Underground Research Laboratory Project by Japan Atomic Energy Agency in the Horonobe area, northern Hokkaido, underground facilities have been constructed. As of Jan. 2012, the Ventilation Shaft, the East Access Shaft and the West Access Shaft have been drilled up to the depth of about 345 m, 310 m and 47 m respectively. And the drifts, connecting the shafts, at 140 m and 250 m in the depth have been excavated. In this study, in-situ crosshole tracer tests were carried out at the 250 m drift to confirm applicability of the in-situ crosshole tracer test equipment and establish methodologies of the in-situ tracer test at the sedimentary hostrock such as the Horonobe area.

The test location is in 250 m Niche off the Ventilation Shaft No.1. From the bottom of this niche, 3 boreholes were drilled (direction: N45 degrees E, dip: 60 degrees downward, diameter: 106 mm, length: about 30 m, arrangement of boreholes: regular triangular prism shape, distance between boreholes: 1m). And then, core observation, physical and fluid loggings and in-situ hydraulic tests were carried out. The in-situ tracer test is implemented by using fractures (T: 10^{-8} to 10^{-6} m^2/sec) extracted based on results of these tests and geological judgments.

Tracers used in this study are Uranine, Deuterium, Anion (Iodine, Bromine and etc.), Cation (Cesium, Strontium and etc.), and rare-earth elements (Europium and etc.) which are stable isotopes. The equipment is composed of rods and packers, and has a test interval of 15 cm length. In addition, for in-situ on-line fluorometric analysis by optical fiber system, flow cells are installed into injection and withdrawal lines in test intervals respectively. Dipole tracer test was implemented, and withdrawal water samples were taken by a fraction collector. Without the on-line analysis, a spectrofluoro-photometer for Uranine, an absorption spectrophotometer for Deuterium, and an ICP-MS or Ion chromatographer for other tracers have used to analyze concentration of tracers.

Results of dipole tracer tests (injection flow rate: 60mL/min., extraction flow rate: 60mL/min.) repeatedly executed showed that the recovered tracer is 20 to 25\% (max. 52\%), peak arrival time by the on-line analysis is 800 to 900 sec., one by the water sampling analysis is 1400 to 1500 sec., and the first detection time by the on-line analysis is about 550 sec., one by the water sampling analysis is about 1000 sec. after tracer injection beginning. Execution of tests by various dipole ratios had not influenced values of the recovered tracer. Accordingly, it is guessed that the direction from injection interval to extraction one crosses the background flow direction at right or high angles. Because peak arrival times of runs by using Uranine and Deuterium are almost corresponding, it has been clear that Uranine functions as non-sorbing tracer on these conditions at the Horonobe URL.

On the in-situ crosshole tracer tests in this study, from results of Uranine and Deuterium measurement, the applicability of the in-situ crosshole tracer test equipment and the approvability of the tests had been confirmed. Also, it had been confirmed that the test methods including countermeasures against degas from groundwater is effective. The analyses of sorbing tracers have been executed, and then, it is planed that characteristics of mass transport are evaluated based on that analytical result. Achievement of this study will be reflected in the next in-situ tracer experiment which will be carried out at drifts of the Horonobe URL at 350 m in the depth.
Application of landscape evolution models in the geological disposal and its problems.

INOUE, Shin1*, HORIO, Atsushi1, YOSHIMURA, Miyoshi1, HATAYA, Ryuta2

1Dia Consultants Co.,Ltd, 2Nuclear Waste Management Organization of Japan

Prolonged topographic change is an important issue to discuss the safety of geological disposal after closure of the site. There are two methods to predict topographic change. One is based on historical geomorphology and the other is based on computer simulation. The latter is called Landscape Evolution Models (LEMs). In this study, we aimed to apply the LEMs for geological disposal and carried out the followings; (1) development of a LEM, (2) extraction of problems by applying the LEMs for a coastal area and provision of the solution, and (3) summarization of the merit of LEMs for safety assessment.

First, we developed the LEMs based on the Grid-based Landscape Evolution Model (GGM; Tanaka, 2011) so that the LEMs express uplift and subsidence, river incision, movement of sediment on slope, and sea erosion.

Second, we applied the LEMs for an actual topography and extracted the following problems.

1. Because the width of the river was fixed in the LEMs, the width of channel was overestimated in an upstream area and underestimated in a downstream area. Thus, the erosion in the upstream area was underestimated, and that in the downstream area was overestimated.

2. Because the difference of erosion resistance by sediments was not considered in the LEMs, the top of the ridge got rounded.

3. Because sedimentation in sea areas was not considered in the LEMs, the amount of sea erosion was overestimated.

Furthermore, as a problem to apply LEMs for safety assessment, the following two points were extracted.

1. Because the target area and period is too wide and long, respectively, we cannot narrow down each parameter to one value.

2. Because a depositional and erosional zone are not distinguishable in the target area, it is not necessarily led to a conservative evaluation, even if we set the parameters to increase the amount of topographic change.

These problems may be solved by a method like ensemble prediction.

LEMs calculates the amount of water in the rivers and the sediment passing through each cell per unit time. It should be an advantage of LEMs, because the method based on historical geomorphology cannot provide such data. Therefore, LEMs should be one of the important tools to lead advanced safety assessment.

This study was carried out as a part of the commissioned research from the Nuclear Waste Management Organization of Japan (NUMO).

Keywords: geological disposal, landform development, Landscape Evolution Models