Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

時間:5月19日18:15-19:30

「みらい」MR12-E03 航海における大気中 CH4、CO2、CO 濃度の船上観測 Shipboard measurements of atmospheric CH4, CO2 and CO mixing ratios during the MR12-E03 cruise of the R/V Mirai

遠嶋 康徳^{1*}, 笹野大輔², 石戸谷重之³, 勝又啓一¹, 松下隼士¹, 石島 健太郎⁴, Patra Prabir⁴ Yasunori Tohjima^{1*}, SASANO, Daisuke², ISHIDOYA, Shigeyuki³, KATSUMATA, Keiichi¹, MATSUSHITA, Junji¹, Kentaro Ishijima⁴, Prabir Patra⁴

1国立環境研究所, 2 気象研究所, 3 産業技術総合研究所, 4 海洋研究開発機構

¹National Institute for Environmental Studies, ²Meteorological Research Institute, ³National Institute of Advanced Industrial Science and Technology, ⁴Japan Agency for Marine-Earth Science and Technology

In order to investigate the potential sources of methane (CH₄) in the Arctic region, continuous measurements of the atmospheric CH₄ were carried out during a R/V Mirai Arctic Ocean cruise from September 3 to October 17, 2012. A cavity ring-down spectroscopy (CRDS) analyzer was used for the shipboard measurements of the atmospheric CH_4 , carbon dioxide (CO_2) and carbon monoxide (CO). The analytical precisions evaluated from the measurements of the standard gases at a 24-hour interval during the cruise were 0.02 ppm, 0.3 ppb, and 0.9 ppb for the 5-min averages of CO_2 , CH_4 , and CO mixing ratios, respectively. When the wind blew from the relative direction of 200 +/- 20 degrees (rear left of the vessel), the contamination caused by its own exhaust fumes affected the CO₂ and CO mixing ratios with a tight correlation (Delta_CO/Delta_CO₂=3.8 ppb/ppm), while there was no significant influence from the exhaust fumes on the CH_4 mixing ratio. Such pollution events are easily distinguishable by the characteristics of the relative wind direction, the tight correlation of CO vs. CO₂, and large short-term (~a few second) variability. The observed CH₄ mixing ratios showed larger variations with elevated peaks of several tens ppb in the Bering Strait, Chukchi Sea, and Arctic Ocean (65-75°N, 155-175°W) in comparison with in the western North Pacific. The largest CH₄ peaks of about 50 ppb were observed off the northern Alaskan cost. Since these CH_4 peaks were associated with similar CO_2 peaks but not with CO peaks, it is unlikely that the combustion processes or ocean were the sources of the elevated CH_4 . The backward trajectory analysis suggests that the North Slope of Alaska is the most probable CH₄ source region. The simulated CH₄ variations based on an atmospheric transport model and given flux maps well capture the observed CH₄ variations, also suggesting that the most of elevated CH₄ were derived from the land sources.

キーワード:大気メタン,北極海,キャビティーリングダウン分光計,船上観測

Keywords: atmospheric CH4, the Arctic Ocean, cavity ring down spectroscopy analyzer (CRDS), shipboard measurements