Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

ACC03-03

時間:5月22日09:40-09:55

地球温暖化にともなうシベリアの陸域環境変化 Global warming and changes in Siberian terrestrial environments

檜山 哲哉 ¹*, マクシュートフ シャミル ², 金 憲淑 ², 佐々井 崇博 ³, 山口 靖 ³, 杉本 敦子 ⁴, 米延 仁志 ⁵, 太田 岳史 ⁶, 小谷 亜 由美 ⁶, 山本 一清 ⁶, 山崎 剛 ⁷, 大島 和裕 ¹, 朴 昊澤 ⁸

Tetsuya Hiyama^{1*}, Shamil Maksyutov², Heonsook Kim², Takahiro Sasai³, Yasushi Yamaguchi³, Atsuko Sugimoto⁴, Hitoshi Yonenobu⁵, Takeshi Ohta⁶, Ayumi Kotani⁶, Kazukiyo Yamamoto⁶, Takeshi Yamazaki⁷, Kazuhiro Oshima¹, Hotaek Park⁸

¹ 総合地球環境学研究所,² 国立環境研究所,³ 名古屋大学大学院環境学研究科,⁴ 北海道大学大学院地球環境科学研究院,⁵ 鳴門教育大学大学院学校教育研究科,⁶ 名古屋大学大学院生命農学研究科,⁷ 東北大学大学院理学研究科,⁸ 海洋研究開発機 構 地球環境変動領域

¹Research Institute for Humanity and Nature, ²National Institute for Environmental Studies, ³Graduate School of Environmental Studies, Nagoya University, ⁴Graduate School of Environmental Science, Hokkaido University, ⁵Department of Health and Living Sciences Education, Naruto University of Education, ⁶Graduate School of Bioagricultural Sciences, Nagoya University, ⁷Graduate School of Science, Tohoku University, ⁸Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology

High levels of precipitation in the Lena River Basin, Siberia, from 2005 to 2008 led to tremendous changes in terrestrial environments. The changes observed include a deepening and moistening of the active layers, hindrance of tree growth, and the expansion of water surfaces due to floods. The anomalously wet condition of forest soils caused larch trees to wither at our forest monitoring site in the middle part of the basin. However an analysis of satellite data revealed that such tree withering occurred only at certain points. On the basis of our permafrost-ecosystem models, we have identified increases in thawing depth and surface soil moisture, and an increase in net primary production. The annual maximum thawing depth (AMTD) was revealed to have gradually increased (deepened) on a decadal scale. Increase in terrestrial water storage in the Lena River Basin generated increases in river base flows during the open water season. Our results also indicated that between 1950 and 2008 the basin-scale AMTD increased at an average rate of approximately 1 cm/year in the region. Moistening and warming of surface soil affect methane emissions from Siberian terrestrial ecosystems. Regional methane fluxes were estimated using an inversion model with data collected from aircraft and tower measurements in Siberia. In 2007 and 2008, enhanced methane fluxes from the wetlands in Western Siberia were estimated under relatively wet conditions with high temperatures. Interestingly, methane fluxes after 2008 have gradually decreased but those in Eastern Siberia have increased unsymmetrically. Such an unsymmetrical (seesaw) pattern between Western and Eastern Siberia has also been observed for carbon dioxide exchanges in terrestrial ecosystems. Gross primary production and ecosystem respiration in the 2000s were estimated using our permafrost-ecosystem models, which showed a decreasing trend in Western Siberia and an increasing trend in Eastern Siberia. These differences were primarily due to the differences in the trends of temperature and precipitation between the two regions. Keywords: global warming, waterlogging, permafrost, thawing, green-house gases