## Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.



ACG05-07

会場:201B

時間:5月24日11:00-11:18

## 夏季北西太平洋における季節予測可能性の起源 Origin of seasonal predictability for summer climate over the Northwestern Pacific

小坂 優 <sup>1\*</sup>, 謝 尚平 <sup>1</sup>, LAU, Ngar-Cheung<sup>2</sup>, VECCHI, Gabriel A.<sup>2</sup> Yu Kosaka<sup>1\*</sup>, XIE, Shang-Ping<sup>1</sup>, LAU, Ngar-Cheung<sup>2</sup>, VECCHI, Gabriel A.<sup>2</sup>

1スクリプス海洋研究所,2地球流体力学研究所

Summer climate in the Northwestern Pacific (NWP) displays large year-to-year variability, affecting densely populated Southeast and East Asia by impacting precipitation, temperature and tropical cyclones. The Pacific-Japan (PJ) teleconnection pattern provides a crucial link from the tropics of high predictability to East Asia. Using coupled climate model experiments, we show that the PJ pattern is the atmospheric manifestation of an air-sea coupled mode spanning the Indo-NWP warm pool. In this coupled mode, the PJ pattern forces the Indian Ocean (IO) via a westward propagating atmospheric Rossby wave. In response, IO sea surface temperature (SST) feeds back and reinforces the PJ pattern via a tropospheric Kelvin wave. Ocean coupling increases both the amplitude and temporal persistence of the PJ pattern. Cross-correlation of ocean-atmospheric anomalies confirms the coupled nature of this PJIO mode. El Nino-Southern Oscillation (ENSO) is a major external driver of the PJIO mode, leaving the last echoes of ENSO in the IO-NWP in the form of this mode. We further demonstrate that the PJIO mode is indeed highly predictable, giving hopes for skillful seasonal forecast over the densely populated region.

## キーワード: 大気海洋相互作用, 気候変動, 東アジア夏季モンスーン, エルニーニョ・南方振動

Keywords: air-sea coupled mode, climate variability, East Asian summer monsoon, El Nino-Southern Oscillation

<sup>&</sup>lt;sup>1</sup>Scripps Institution of Oceanography, <sup>2</sup>GFDL, NOAA