Lower troposphere ozone derivation by remote sensing: earth surface albedo presumption in airplane observation

Tabito Fukuju1,*, Yamaguchi, Yuki2, Kita, Kazuyuki2, Itabashi, Ryoei1, Kinase, Takeshi1, Yanaka, Humiya1, Tanaka, Misako1, Irie, Hitoshi3, Noguchi, Katsuyuki4, Nakayama, Tomoki5, Matsumi, Yutaka5, Nagai, Tomohiro6, Sakai, Tetsu6, Zaizen, Yuzi6

1Graduate School of Science and Engineering, Ibaraki University, 2The College of Science at Ibaraki University, 3Center for Environmental Remote Sensing, Chiba University, 4Faculty of Science, Nara Women’s University, 5Solar-Terrestrial Environment Laboratory, Nagoya University, 6Meteorological Research Institute

abstract

The lower tropospheric ozone is a major photochemical oxidant affecting human health and vegetation. In recent years, the long-range transport of the tropospheric ozone from the Asian Continent affects air quality in Japan and other wide areas. Remote sensing from a satellite is effective to observe such extensive/transboundary air pollution. However, it has been quite difficult to measure the lower tropospheric ozone from the satellite.

We have proposed that it can be evaluated with simultaneous measurement of solar backscattering spectra in the ultraviolet (UV) and visible (Vis) regions. Because the atmospheric Rayleigh scattering cross-section is much larger in UV than that in Vis, lower tropospheric light path length of the solar scattered radiation observed from space is significantly different in these two wavelength regions. This difference in the light path changes ozone column amount along it in the lower troposphere, and enables us to evaluate the lower tropospheric ozone amount.

We carried out aircraft experiments to validate this method over Tsukuba on 10th and 13rd September 2012. UV and Vis backscatter spectra were measured with two Maya2000pro (Ocean Optics) spectrometers at two altitudes 2500 ft (760 m) and 25000 ft (7600 m). Simultaneously, ozone profile was measured with ozone monitors on-board the aircraft, with ozonesonde launched near Tsukuba, and the tropospheric ozone lidar. Because aerosol scattering may significantly affect the evaluation of the lower tropospheric ozone amount, in situ aerosol observation with the CRDS, PSAP, and PASS instruments and the lidar observation were carried out in the Meteorological Research Institute. In this study, surface scattering spectra, which significantly affects both the evaluation of ozone column amount from the measured spectra and the light path length. In this study, we estimate the surface scattering spectra from the solar backscattering spectra at 2500 ft level, considering the influence of aerosol scattering and absorption.

Keywords: lower troposphere ozone, remote sensing, earth surface albedo