Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AHW26-06

Room:203

Time:May 23 15:30-15:45

A multi-isotope study on Cl-rich groundwater in the lower reaches of Tone River, Japan

Masaya Yasuhara^{1*}, Akihiko Inamura¹, Noritoshi Morikawa¹, Yuki Tosaki¹, Hiroshi Takahashi¹, Kiyohide Mizuno¹, Kiyoji Ikeda², Kazuyoshi Asai³

¹Geological Survey of Japan, AIST, ²Geological Survey of Japan, AIST, ³Geo-science Labo. Inc.

Groundwater in an alluvial plain extending along the Tone River in the southern parts of Ibaraki Prefecture and northwestern parts of Chiba Prefecture, Japan is known to have a high Cl concentration. A multi-isotope study based on 2H, 18O, 3H, 13C, 14C, 4He and 36Cl has been in progress to elucidate groundwater system of the region with special reference to the origins and residence times of both water and Cl. Around 95 groundwater samples from a depth interval between 5 and 250m were analyzed to have a clear grasp of the geochemical status quo of groundwater in the Holocene sediments (alluviums) of the alluvial plain and the underlying Pleistocene sediments. As a result, it was found that groundwater in the Pleistocene sediments in the depth of 80-150m has a Cl concentration of 62-200 mg/L and is characterized by the depleted delta-180 and delta-D values as well as a relatively old 14C age of about 20,000 yrs. With regard to origins of water, a potential source is assumed to be the precipitation of low stable isotopic composition in the Last Glacial Maximum (peak period at around 20,000 yrs. BP) when the sea level of the Tokyo Bay was lower than the present by more than 100 m. The 36Cl/Cl analyses indicate an admixture of fossil sea water trapped in the sediments during the Shimosueyoshi transgression (peak period at around 125,000 yrs. BP) or even earlier transgressions is likely to account for its elevated Cl concentration. In contrast, groundwater in the overlying Holocene sediments in the depth of 30-40m, which has a much higher Cl concentration of up to 768 mg/L, is characterized by a relatively young 14C age of ca. 9,000 yrs. and the enriched delta-18O and delta-D values. Taking these measurements and 36Cl/Cl analyses into account, groundwater in the Holocene sediments is assumed to have its Cl and water origins in sea water of the Jyomon transgression period starting around 10,000 yrs. BP and isotopically-enriched precipitation of the same period, respectively.

Keywords: Tone River, alluvial plain, Cl-rich groundwater, multi-isotope study, residence time, origins of water and Cl