The geochemical analysis about formation of groundwater in Aso caldera, Japan

Minoru Takahashi ${ }^{1 *}$, Jun-ichiro Ishibashi ${ }^{2}$, Hiroshi Naraoka ${ }^{2}$
${ }^{1}$ Graduate School of Sciences, Kyushu University, ${ }^{2}$ Faculty of Sciences, Kyushu University

Aso caldera is known as rich in groundwaters. Among them, it is notable wide distribution of Fe-rich groundwater (called as Akamizu) in the western part of Aso-dani (north floor of the Aso caldera). In order to reveal relationship between the Fe-rich groundwater (Akamizu) and hot spring waters which are pumped up from aquifers in deeper depth, we studied their chemical composition.

Hot spring waters were collected from 8 sites (depth: $150 \mathrm{~m}, 400 \mathrm{~m} \sim 1500 \mathrm{~m}$) in October 2012. Temperature, pH , electric conductivity (EC) and oxidation-reduction potential (ORP) were measured in situ. Cations $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}\right.$, total Fe) were analyzed with ICP-AES and $\mathrm{Rb}^{+}, \mathrm{Cs}^{+}, \mathrm{La}^{2+}$ were analyzed with ICP-MS. Si was analyze by colorimetry. Anions (F^{-}, $\mathrm{Cl}^{-}, \mathrm{SO}_{4}{ }^{2-}$) were analyzed by Ion Chromatography. Alkalinity was determined by acid titration. Sulfur isotopic composition of dissolved $\mathrm{SO}_{4}{ }^{2-}$ was measured by IR-MS.

Concentrations of major cation showed positive correlation with Cl^{-}concentration, although total Fe did not show clear relationship. Trace elements, Rb^{+}showed positive correlation with Cl^{-}concentration, but concentrations of Cs^{+}and La^{2+} are lower than detection limit. Delta- ${ }^{34} \mathrm{~S}$ values showed a range of from +13.4 per-mill to +16.0 per-mill, which showed local difference tend to increasing from the east to the west.

Relationship among concentrations of dissolved ions and delta- ${ }^{34}$ S values in the hot spring waters are well explained by mixing between two or three end-members, one of which could be considered as a geothermal fluid. Moreover, chemical composition of Fe-rich groundwater (Akamizu) is explained by the same end-members, which suggests contribution from the geothermal fluid.

Keywords: Aso, hot spring, groundwater, isotope

