Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

AOS25-05

Room:203

Time:May 19 15:15-15:30

Insights into the production processes of N2O in the western north Pacific by using a marine ecosystem isotopomer model

Chisato Yoshikawa^{1*}, Hitomi Abe¹, Maki Noguchi², Keichi Kuzunuki¹, Sebastian Danielache³, Sakae Toyoda¹, Naohiro Yoshida¹

¹Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, ²Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, ³Faculty of Science and Technology, Sophia University

Nitrous Oxide (N₂O) is a significant anthropogenic greenhouse gas and a stratospheric ozone destroyer. Although the estimation of global N₂O flux from ocean to the atmosphere is 3.8 TgNyr⁻¹, the estimation varies greatly, from 1.8 to 5.8 TgNyr⁻¹. This is because previous models had estimated N₂O concentration from oxygen concentration indirectly. In fact, marine N₂O production processes are very complicated; hydroxylamine oxidation during nitrification, nitrite reduction during nitrifier denitrification and nitrite reduction during denitrification produce N₂O and N₂O deduction during denitrification consumes N₂O. Therefore marine N₂O production processes are poorly understood quantitatively. N₂O isotopomers (oxygen isotope ratio (delta-¹⁸O), difference in abundance of ¹⁴N¹⁵N¹⁶O and ¹⁵N¹⁴N¹⁶O (SP), and average nitrogen isotope ratio (delta-¹⁵N)) are useful tracers to distinguish these processes and had revealed N₂O production processes in various ocean environments.

In this study, a marine ecosystem model including the two N_2O production processes (hydroxylamine oxidation during nitrification) and isotopomers cycle is developed, in order to understand the N_2O production processes quantitatively and make the equations of N_2O production processes. We applied this model to the water above the 220m depth at the JAMSTEC time-series subarctic and subtropical sites (K2 and S1) in the western north Pacific. The observed N_2O in the waters above the depth of 1000m at K2 show high concentrations, nearly 33 permill of SP values, isotopically heavy delta-¹⁵N values and isotopically heavy delta-¹⁸O values compared to S1. These results suggest that the age of water mass above 1000m at K2 is high and the water accumulates N_2O with progression of nitrification compared to S1.

Our model is constrained by the observed nitrate, chlorophyll a and N₂O concentrations and delta-¹⁵N values of nitrate, phytoplankton, zooplankton and N₂O and SP values of N₂O at K2 and S1. In the case applied to K2, the observed subsurface N₂O profile cannot be represented just by abiological N₂O processes (gas exchange and vertical water exchanges). This result suggests that biological N₂O processes occur in the subsurface water at K2. Moreover, from the results of sensitivity studies about SP values of N₂O, we estimate that N₂O is produced only by nitrification at K2 and the ratio of N₂O production to nitrate production during nitrification is 0.22%, which is within the range of previous studies, from 0.13 to 0.37%. Furthermore, the results of sensitivity studies about delta-¹⁵N values of N₂O suggest a higher contribution of archaeal ammonia oxidation during nitrification than bacterial ammonia oxidation. In this presentation, we will also show the simulated results applied to S1, where the observed isotopomer ratios suggests both contributions of hydroxylamine oxidation during nitrification and nitrite reduction during nitrification to the subsurface N₂O production.