たんぽぽ計画における有機物曝露実験
Exposure experiments of organic compounds in space environments in the TANPOPO mission

三田 輝*1，横田伸一*2，橋本博文3，東出真澄4，今井栄一5，河合秀幸6，川本幸徳7，神田一浩8，小林憲正7，中川和道9，鳴海一成10，奥平憲9，田端誠9，薮田ひかる12，山下雅道3，矢野剣3，吉田聡13，山崎明彦2，たんぽぽ WG3
Hajime Mita*1，Shin-ichi Yokobori2，Hirofumi Hashimoto3，Masumi Higashide4，Eiichi Imai5，Yuko Kawaguchi2，Hideyuki Kawai6，Yukinori Kawamoto7，Kazuhiro Knada8，Kensei Kobayashi7，Kazumichi Nakagawa5，Issay Narumi10，Kyoko Okudaira11，Makoto Tabata9，Hikaru Yabuta12，Masamichi Yamashita1，Hajime Yano6，Satoshi Yoshida13，Akihiko Yamagishi9，Tanpopo WG3

1 福岡工業大学，工，2 東京薬科大学，生命科学，3 JAXA/ISAS，4 JAXA，5 長岡技術科学大学，生命科学，6 千葉大学，院理，7 横浜国立大学，院工，8 兵庫県立大学，LASTI，9 神戸大学，院人間環境科学，10 原子力機関，量子ビーム，11 会津大学，12 阪大，院理，13 放医研

The Tanpopo mission is a Japanese astrobiological experiment which will be conducted on the Japanese Experiment Module (JEM) of the International Space Station (ISS). The Tanpopo mission consists of six subthemes: 1) capture of microbes in space, 2) exposure of microbes in space, 3) exposure of organic compounds in space, 4) capture of organic compounds (micrometeoroids) in space, 5) evaluation of ultra low-density aerogel developed for the Tanpopo mission, and 6) capture of space debris at the ISS orbit (approximately 400 km altitude).

Here, we overview the exposure experiment of organic compound in space environment. Since many kinds of organic compounds, especially, amino acids which are one of the most important organic compounds in living organisms, are found from extraterrestrial materials, extraterrestrial and outer-solar environments are thought as the place for the prebiotic organic compound synthesis. Then, it is proposed that the first organisms on the earth was born from the prebiotic organic compounds delivered into the early earth on meteorites, micrometeorites and/or comets. In order to discuss the possibility of the hypothesis, alteration of prebiotic compounds in space environments should be clear. Therefore, we will expose some prebiotic organic compounds on the exposure facility at ISS-JEM.

Glycine, isovaline, hydantoin, ethylmethylhydantoin and complex organics (CAW) are chosen for the exposure. Hydantoin and ethylmethylhydantoin are plausible low molecular weight precursors for glycine and isovaline, respectively. CAW which is a simulated material of interstellar medium prepared by proton radiation into mixture of CO, NH₃ and H₂O is a different type of plausible precursors for amino acids. In the space environments, uv-light and cosmic rays (heavy ions and gamma-rays) will cause the alteration of organic compounds. Therefore, simulation experiments were studied using Xe-excimer lamp (uv 172 nm), synchrotron radiation at NewSUBARU BL06 (uv > 130 nm), 60Co gamma-ray radiation (JAEA Takasaki) and carbon ion beams (290MeV, NIRS), gamma-Ray and heavy ion beam irradiation with dose of ISS environment for one year induced little decomposition of organic compounds. However, uv irradiation was critical for organic compounds. Although almost all glycine and isovaline were decomposed, remains of hydantoin and ethylmethyl hydantoin were approximately 29% and 72%, respectively, with uv dose of ISS environment for one year. Furthermore, CAW was more stable than hydantoin. Amino acids precursors, especially, complex organics were more stable than free amino acids. Therefore, extraterrestrial amino acids precursors would be effective source for origins of life on the earth. We will demonstrate this conclusion on the ISS-JEM.

In addition, Nakagawa and his colleagues were found that dialanine was formed from alanine films by uv-irradiation. We will demonstrate a peptide synthesis with uv-irradiation in the space environment. Furthermore, piece of meteorite will be also exposed in order to examine the weathering effect in the ISS environment.

キーワード: たんぽぽ, 有機物曝露, 国際宇宙ステーション, アミノ酸
Keywords: Tanpopo, exposure of organics, ISS, amino acids