Resolution of multibeam bathymetric mapping and the dimension of coral reef topography

Hironobu Kan1, Masayuki Nagao2, Yosuke Nakashima3, Nobuyuki Hori4, Yusuke Yokoyama5, Kazuhisa Goto6, Tomoya Ohashi1, Atsushi Suzuki2, Shin Takada7, Kouichi Nakano7

1 Okayama Univ., 2 Institute of Geology and Geoinformation, AIST, 3 Ariake National College of Technology, 4 Nara Univ., 5 AORI, Univ. of Tokyo, 6 IRIDeS, Tohoku Univ., 7 Toyo Corporation

The complex reef topography such as spurs and grooves are difficult to visualize. This study attempts to observe 3D measuring and mapping of outer reef slope using high-resolution multibeam bathymetric sonar. The survey was carried out off the southern coast of Kume Island in the Ryukyu Islands, southwestern Japan. The minimum/maximum depth in the survey area was 0.2/284.7 m in the measured area of 1.15 x 1.35 km. The reef topography was visualized with 2 m mesh-size for whole area, 1 m mesh-size for the area shallower than 60 m deep, and 0.2 m mesh-size at ~10 m deep. The bathymetric result was confirmed by SCUBA above the 40 m depth line.

The reef micro-topography (e.g., spurs and grooves) with the dimension ranges from units to tens of meters was visualized when 1 m mesh-size was adopted. The undulation associating with coral colonies which dimension is around tens of centimeters was not visible at the highest resolution map of 0.2 m mesh-size. The reef micro-topography was obscure when the mesh-size larger than 2 m was adopted. This comparison between the map resolution and the topographic dimension is useful for future bathymetric surveys.

Keywords: multibeam bathymetric survey, submarine topography, mapping, scale, coral reef, Kume Island

マルチビーム測深地形図の解像度と礁地形の規模

Resolution of multibeam bathymetric mapping and the dimension of coral reef topography

晋浩伸1, 長尾正之2, 中島洋典3, 堀信行4, 横山祐典5, 後藤和久6, 大橋倫也1, 鈴木淳2, 高田慎7, 中野浩一7

Hironobu Kan1, Masayuki Nagao2, Yosuke Nakashima3, Nobuyuki Hori4, Yusuke Yokoyama5, Kazuhisa Goto6, Tomoya Ohashi1, Atsushi Suzuki2, Shin Takada7, Kouichi Nakano7

1岡山大, 2産総研地質情報, 3有明高専, 4奈良大, 5東北大気海洋研, 6東北大, 7(株) 東陽テクニカ

1Okayama Univ., 2 Institute of Geology and Geoinformation, AIST, 3 Ariake National College of Technology, 4 Nara Univ., 5 AORI, Univ. of Tokyo, 6 IRIDeS, Tohoku Univ., 7 Toyo Corporation

The complex reef topography such as spurs and grooves are difficult to visualize. This study attempts to observe 3D measuring and mapping of outer reef slope using high-resolution multibeam bathymetric sonar. The survey was carried out off the southern coast of Kume Island in the Ryukyu Islands, southwestern Japan. The minimum/maximum depth in the survey area was 0.2/284.7 m in the measured area of 1.15 x 1.35 km. The reef topography was visualized with 2 m mesh-size for whole area, 1 m mesh-size for the area shallower than 60 m deep, and 0.2 m mesh-size at ~10 m deep. The bathymetric result was confirmed by SCUBA above the 40 m depth line.

The reef micro-topography (e.g., spurs and grooves) with the dimension ranges from units to tens of meters was visualized when 1 m mesh-size was adopted. The undulation associating with coral colonies which dimension is around tens of centimeters was not visible at the highest resolution map of 0.2 m mesh-size. The reef micro-topography was obscure when the mesh-size larger than 2 m was adopted. This comparison between the map resolution and the topographic dimension is useful for future bathymetric surveys.

Keywords: multibeam bathymetric survey, submarine topography, mapping, scale, coral reef, Kume Island