Threshold pressure measurement by several methods on sedimentary rock in Japan

Masaki Ono₁*, Hiroshi, KAMEYA,₂ Kohichi, HOSODA, Yotsuo, KAMIDOHZONO, Junya, TAKESHIMA

₁OYO Corporation Core Lab, ₂OYO Corporation Energy Division

We conducted laboratory tests to investigate threshold pressure in CO₂/water system. First technique is mercury intrusion test (MIT). Second technique is threshold pressure measurement with N₂ using step by step method. Third technique is threshold pressure measurement with supercritical CO₂ using step by step method. These techniques are commonly used but have both advantages and disadvantages. MIT is less time consuming but we cannot control the direction of injecting fluid. Test apparatus for threshold pressure measurement with N₂ is much simpler than that using supercritical CO₂. However, we have to estimate actual threshold pressure in CO₂ storage condition by converting threshold pressure in N₂/water system using interfacial tensions and contact angles. Threshold pressure measurement with supercritical CO₂ is most reliable.

Rock cores used in this study were derived from outcrop of The Yourou-valley, located in Chiba prefecture in Japan. This outcrop belongs to Kiwada formation of the Kazusa formation group which is thought to be formed in Plio-Pleistocene. Porosity of sample is 45%, natural density is 1.89g/cm³, water content is 31%.

In MIT, we used two methods to calculate threshold pressure. By first method, we drew the tangent line with minimum grade against the curve relating saturation and capillary pressure. The tangent line is spread to the vertical line which expresses mercury saturation is zero and this intercept means the threshold pressure. By second method, threshold pressure is determined by the pressure at 10% mercury saturation1). Threshold pressure evaluated from former method is 4.08MPa and 4.87MPa is obtained by second method. Using the contact angles and interfacial tensions, we can convert threshold pressure in Hg/Air system to that in CO₂/water system. Estimated threshold pressures in CO₂/water system are 0.32MPa in first method and 0.38MPa in second method.

Threshold pressure measurement with N₂ was also conducted. Room temperature was kept approximately 21 deg c. By N₂ injection, pore water in a rock core was pushed out from a specimen but water production ceased according to the passage of time. Injection pressure was increased step-wisely when water production stopped. This procedure was repeated until continuous water flow was observed. In this test, continuous water flow was observed after injection pressure reached to 1.71MPa. We evaluated threshold pressure in N₂/water system is 1.66MPa which is average pressure of final pressure step and former pressure step (1.60MPa). Estimated threshold pressure in CO₂/water system is 0.66MPa.

Threshold pressure measurement with supercritical CO₂ was conducted under the temperature of 40 deg C. Pore water pressure of 10MP was applied to ensure that CO₂ was in supercritical state during the test. After injection pressure reached to 1.10MPa, continuous water flow occurred. Threshold pressure in CO₂/water system is evaluated 1.04MPa.

Threshold pressure estimated by MIT was lowest. Threshold pressure obtained from direct measurement with supercritical CO₂ was highest value which is 1.6 times higher than that of N₂. Possible reasons for these test results are listed below;

1. Change of the structure of rock by drying procedure might affect the result of mercury intrusion test.
2. Difference of flow direction between mercury intrusion test and other techniques may have an influence on the value of threshold pressure.
3. Uncertainty of contact angles and interfacial tensions of displacing fluids is also a possible factor which leads different test result.

We gratefully acknowledge special support received from New Energy and Industrial Technology Development Organization(NEDO). Part of this study was performed under Innovative zero-emission integrated coal gasification combined cycle project.


Keywords: Threshold Pressure, Supercritical CO₂, Sedimentary Rock