Sulfur isotope profiles in the pelagic Panthalassic deep sea during the Permian-Triassic transition

Satoshi Takahashi1, Kunio Kaiho2, Rie Hori3, Paul Gorjan4, Takahiro Watanabe2, Satoshi Yamakita5, Yoshiaki Aita6, Atsushi Takemura7, Bernhard K. Sporli8, Takeshi Kakegawa2, Masahiro Oba2

1 Department of Earth and Planetary Science, University of Tokyo, 2 Graduate school of Science, Tohoku University, 3 Graduate school of Science and Engineering, Ehime University, 4 Department of Earth and Planetary Science, Washington University, 5 Faculty of Education and Culture, University of Miyazaki, 6 Faculty of Agriculture, Utsunomiya University, 7 Geoscience Institute, Hyogo University of Teacher Education, 8 Geology, School of Environment, The University of Auckland

Mesozoic accretionary complexes in Japan and New Zealand contain Panthalassic low latitude and southern mid-latitude deep-water sedimentary rock respectively. These sedimentary rocks record environmental changes in the pelagic Panthalassic Ocean during the transition associated with the severe Permian-Triassic mass extinction. This study presents sulfur isotope records of sulfide from continuous deep-sea Permian-Triassic boundary sections located in northeast Japan (the Akkamori section-2, the most continuous section amongst other previously reported deep-sea sections) and North Island of New Zealand (the Waiheke-1 section, providing the first sulfur isotopic record from a southern hemisphere deep-sea section). Both sections show sharp minus 15 permil drops of the sulfur isotope ratio coupled with a negative shift of organic carbon isotope ratio. Similar decreases in sulfur isotope ratio of carbonate-associated sulfates by minus 10 permil accompanied with a negative shift of inorganic carbon isotope ratio at the end-Permian mass extinction horizon have been reported in some shallow water Paleotethyan sections. These sulfur isotope changes suggest that a massive release of 32S-enriched sulfur from the H2S-rich water to the oxic surface-water coincided with the end-Permian mass extinction.

Keywords: Mass extinction, Panthalassa, Pelagic deep sea, Permian, Triassic, Sulfur Isotope