MIS31-P01 Room:Convention Hall Time:May 19 18:15-19:30

Comet-like particle growth in $\mathrm{Al}-\mathrm{SiO}$

Hitoshi Suzuki ${ }^{1 *}$
${ }^{1}$ Department of Electronic Engineering, Tohoku Gakuin University

When a metal was evaporated in an inert gas atmosphere, a vapor of the metal cooled and formed nanoparticles by collision with the inert gas molecules. The nanoparticles grow by coalescence growth and rise on a convection flow of the gas like a smoke. The nanoparticle production method is called a gas evaporation method.

SiO consists of Si and SiO_{2}. Metal nanoparticles covered with an amorphous SiO layer can be produced by evaporating a mixture powder of the SiO and a metal. However, comet-like particles were grown in the rising smoke using a few kinds of metals ${ }^{1)}$. In the case of $\mathrm{Cr}-\mathrm{SiO}$ particle produced by the gas evaporation method, Si was dissolved in a Cr drop at a high temperature region in a smoke. The Si dissolved in the Cr drop was crystallized by supersaturation on cooling process. The Si crystal grew like a tail and the Cr drop became CrSi_{2} crystal like a core of come-like particle. The comet-like particle grew around the eutectic point between Si and CrSi_{2}. Thus, the comet-like particle grew like a VLS mechanism.

Since Al has a eutectic point with Si , the comet-like particle growth was expected using a mixture powder of Al and SiO . Production of the comet-like particles was tried by the gas evaporation method.

Comet like-particles were produced by evaporation of Al and SiO mixture powder in Ar gas $1.0 * 10^{4} \mathrm{~Pa}$. The particles were observed by TEM, and analyzed by EDS. It was found that a core part of the comet-like particle consisted of Al or Al and Si , a tail part consisted of Al and O by EDS analysis. ED patterns of the particles indicated that structure of the core part was Si and Al crystals, and the tail part was $\mathrm{Al}_{2} \mathrm{O}_{3}$ single crystal. Composition of Al and Si in the core part depended on the ratio of Al and Si in the mixture powder. The tail part structure was always $\mathrm{Al}_{2} \mathrm{O}_{3}$ in every composition. The comet-like particles were grown like a VLS mechanism with SiO 2 reduction and Al oxidation.

1) C. Kaito et.al, J. Crystal Growth 200 (1999) 271.

Keywords: Nanoparticle, Whisker, $\mathrm{Al}, \mathrm{Si}, \mathrm{Al}_{2} \mathrm{O}_{3}$, TEM

