Quantification of oxygen isotope ratios in the Venus atmosphere by IR spectroscopy

Naomoto Iwagami1*, George HASHIMOTO2

1University of Tokyo, 2Okayama University

The oxygen isotope ratios 17O/16O and 18O/16O in the solar system are known to show a clear systematic relation. And the relation differs planet by planet. For example, the 17O/16O ratio as a function of 18O/16O ratio in Mars appears to be larger than that in the Earth-Moon system by 0.05 %. This fact indicates that the proto-Earth-Mars matter was so well mixed but with a systematic difference. In such a way, the isotope ratios may provide information about the origin and evolution of the planets. However, 17O/16O ratio in Venus has never been quantified, and may provide further information about the mixing history of the early solar system if measured.

The ratios may be quantified by ground-based CO\textsubscript{2} IR spectroscopic measurements. By assuming a use of IRTF CSHELL spectrometer with a nominal resolution of 40000, we looked for suitable wavenumber regions to quantify the 17O/18O and 18O/16O ratios. The suitable region for the former is found at 2648 cm-1 as shown in the figure, and the latter at 4582 cm-1. In the figure, the top two curves show the earth and solar structures disturbing the quantification, and the middle two curves show the Venus C17O16O and C18O16O structures indicating a feasibility to quantify the 17O/18O ratio.