Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

PCG31-05

Room:301A

Time:May 23 10:00-10:15

Quantification of oxygen isotope ratios in the Venus atmosphere by IR spectroscopy

Naomoto Iwagami^{1*}, George HASHIMOTO²

¹University of Tokyo, ²Okayama University

The oxygen isotope ratios ${}^{17}\text{O}/{}^{16}\text{O}$ and ${}^{18}\text{O}/{}^{16}\text{O}$ in the solar system are known to show a clear systematic relation. And the relation differs planet by planet. For example, the ${}^{17}\text{O}/{}^{16}\text{O}$ ratio as a function of ${}^{18}\text{O}/{}^{16}\text{O}$ ratio in Mars appears to be larger than that in the Earth-Moon system by 0.05 %. This fact indicates that the proto-Earth-Mars matter was so well mixed but with a systematic difference. In such a way, the isotope ratios may provide information about the origin and evolution of the planets. However, ${}^{17}\text{O}/{}^{16}\text{O}$ ratio in Venus has never been quantified, and may provide further information about the mixing history of the early solar system if measured.

The ratios may be quantified by ground-based CO₂ IR spectroscopic measurements. By assuming a use of IRTF CSHELL spectrometer with a nominal resolution of 40000, we looked for suitable wavenumber regions to quantify the ¹⁷O/¹⁸O and ¹⁸O/¹⁶O ratios. The suitable region for the former is found at 2648 cm⁻¹ as shown in the figure, and the latter at 4582 cm⁻¹. In the figure, the top two curves show the earth and solar structures disturbing the quantification, and the middle two curves show the Venus C¹⁷O¹⁶O and C¹⁸O¹⁶O structures indicating a feasibility to quantify the ¹⁷O/¹⁸O ratio.

