Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

PCG31-22

会場:301A

時間:5月23日16:30-16:45

惑星磁気圏の構造とダイナミクスを決めるパラメータ Key parameter of planetary magnetospheric configuration and dynamics

深沢 圭一郎^{1*} Keiichiro Fukazawa^{1*}

1九州大学情報基盤研究開発センター

¹Research Institute for Information Technology, Kyushu University

It has long been recognized that the rapidly rotating magnetospheres of Jupiter and Saturn differ greatly from that of the Earth where rotational effects are largely confined to the plasmasphere. In addition to rapid rotation Jupiter and Saturn both have sources of plasma within the magnetosphere: the volcanos on Io and the ice geysers on Enceladus while the main sources of plasma at the Earth are the solar wind and ionosphere. The magnetic moments of the two rotating gas giants are much larger than that at Earth although the surface field at Saturn is about the same as the Earth's because of its larger radius. At the Earth magnetospheric dynamics are largely controlled by the interplanetary magnetic field and reconnection while at Jupiter and Saturn the solar wind dynamic pressure is more important. Internal processes are also more important at Jupiter and Saturn than at the Earth.

We have performed the MHD simulation of Earth, Jupiter and Saturn then found the each magnetosphere has a unique character. In particular, we have obtained the vortex configuration in magnetospheric convection from Saturn's results and it seems that the formation of vortex may be related to the cushion region where is the space between plasma corotation region and magnetopause. From the simple calculation, the cushion region is controlled by the planetary rotation speed and intrinsic magnetic field. Thus in this study we perform the MHD simulation of magnetosphere with changing the speed of rotation and magnitude of magnetic field to see how the magnetospheric configuration varies. In addition, we discuss the simulation results compared to the previous results of Jovian and Kronian magnetosphere.