$^{40}\text{Ar}/^{39}\text{Ar}$ method using cosmogenic ^{39}Ar

Hironobu Hyodo1, Yuko Takeshima2, Tetsumaru Itaya1

1RINS, Okayama Univ. of Sci., 2NEC Aerospace Systems, Ltd

Finding of ^{39}Ar of cosmogenic origin in meteorites was one of cues for developing $^{40}\text{Ar}/^{39}\text{Ar}$ method. If the production rate of ^{39}Ar is uniform, and if a long enough period elapses, the production and decay of ^{39}Ar reach to equilibrium since ^{39}Ar has a half life of 293 years. Eventually a rock or a mineral possesses a certain amount of ^{39}Ar depending on its potassium content. Using samples under the same exposure to cosmic ray, and determining an age of a sample, $^{40}\text{Ar}/^{39}\text{Ar}$ method can be applicable to the rest of unknowns. One of such possibilities may be to apply to samples on the lunar surface. No need for atmospheric contamination and ^{36}Ar measurement, and the application may be easier than that on the earth’s surface. However, the method cannot be applied to samples in some depth or with different exposure histories.

Keywords: ^{39}Ar, cosmogenic, $^{40}\text{Ar}/^{39}\text{Ar}$ age, lunar surface, in situ measurement