Development of WASAVIES (WArning System of AVIation Exposure to SEP): Science Modeling

Ryuho Kataoka1*, Tatsuhiko Sato2, Yuki Kubo3, Daikou Shiota4, Seiji Yashiro5, Takao Kuwabara6, Hiroshi Yasuda7

1Tokyo Tech, 2JAEA, 3NICT, 4RIKEN, 5CUA, 6Delaware University, 7NIRS

The prediction of solar energetic particles (SEP) is important to mitigate the space weather hazard toward increasing solar activities, and is also an ultimate problem for physics-based modelers because of the hybrid nature of MHD fluid and particles. We are developing a forecast system called Warning System of AVIation Exposure to Solar energetic particles (WASAVIES). The trigger of WASAVIES is the automated detection of ground level enhancement (GLE) onset by multiple ground-based neutron monitors [Kuwabara et al., Space Weather, 2006]. We then obtain basic parameters of flare and coronal mass ejections (CME) as input parameters for focused transport of SEP [Kubo et al., JpGU2013]. Realistic inner heliosphere is also dynamically reconstructed at the same time [Shiota et al., JpGU2013], and additional control parameters (e.g., mean free path of SEP) are evaluated for solving the focused transport of SEP. Tracing the SEP particles in a Tsyganenko model, we obtain the time-varying proton rigidity spectra at the top of atmosphere, and the aviation route doses based on the predicted dose-rate are finally evaluated by air shower simulations [Sato et al., JpGU2013]. We show first results and discuss the limitation of the science modeling and possible further development.

Keywords: solar energetic particles, cosmic rays, radiation dose, interplanetary magnetic field, coronal mass ejections