Comparison of energetic electron fluxes at Earth and Saturn

Danny Summers\(^1\)*, Rongxin Tang\(^2\)

Danny Summers\(^1\)*, Rongxin Tang\(^2\)

\(^1\)MUN, St John’s, Canada; KHU, Yongin, Korea, \(^2\)MUN, St John’s, Canada; Nanchang University, China

Energetic electron fluxes (18 keV–21 MeV) observed by the MIMI/LEMMS instrument on the Cassini mission during 2004-2008 are analyzed. We consider all 101 orbits and we select portions of the orbits that lie within 0.5 R of the magnetic equatorial plane, where R is Saturn’s radius. We determine the average electron differential flux and integral flux at specified L-shells in the range \(4.5 < L < 11\). Comparisons are made between the observed fluxes and the corresponding relativistic self-limiting values developed from Kennel-Petschek theory. These comparisons suggest that (1) at lower L-shells particle injection is relatively weak, (2) at intermediate L-shells, sufficiently strong particle injections generate whistler-mode waves to self-limit trapped fluxes, and (3) at larger L-shells, intense particle injections result in trapped particle fluxes well in excess of the Kennel-Petschek limit. Further, we compare the properties of energetic electron fluxes at Earth and Saturn.

Keywords: observed electron fluxes at Earth, Saturn, Kennel-Petschek limit

キーワード: observed electron fluxes at Earth, Saturn, Kennel-Petschek limit

Keywords: observed electron fluxes at Earth, Saturn, Kennel-Petschek limit