Spatial distribution of the plasmaspheric ions estimated by assimilation of IMAGE/EUV data

中野 健也1*, Fok Mei-Ching2, Brandt Pontus3, 梶口 知之 1
Shin'ya Nakano1*, Mei-Ching Fok2, Pontus Brandt3, Tomoyuki Higuchi1

1 統計数理研究所, 2NASA Goddard Space Flight Center, 3The Johns Hopkins University Applied Physics Laboratory
1The Institute of Statistical Mathematics, 2NASA Goddard Space Flight Center, 3The Johns Hopkins University Applied Physics Laboratory

The IMAGE satellite observed EUV radiation at 30.4 nm which is scattered by helium ions in the plasmasphere. The imaging data of extreme ultra-violet (EUV) from the IMAGE satellite provides the information about the global structure of the plasmasphere. We are developing a data assimilation technique which incorporates the IMAGE/EUV data into a two-dimensional fluid model of the plasmasphere. Our approach consists of two steps. First, we estimate the initial state of the plasmasphere by the linear inversion. Second, we estimate the temporal evolution of the plasmasphere from a sequence of EUV images by using the ensemble transform Kalman filter, which is one of sequential data assimilation algorithms. By combining a sequence of EUV images and the dynamic model of the plasmasphere, we estimate the spatial distribution of the plasmaspheric helium ions and the electric potential. We will show the structure of the plasmasphere for some events, which are estimated with the data assimilation technique.

キーワード: プラズマ円, データ同化
Keywords: plasmasphere, data assimilation