Poleward expansion of high-altitude acceleration region at substorm

Akira Morioka1, Yoshizumi Miyoshi2, Yasumasa Kasaba1, Akira Kadokura3, Hiroaki Misawa1

1Tohoku Univ., 2STEL, Nagoya Univ., 3NIPR

It is well established, since the first phenomenological study of auroral substorm by Akasofu [1964], that auroral bulge expands poleward after breakup. Fujii et al. [1994] showed that the poleward edge of the auroral bulge is characterized by dense upward FAC and intense electron precipitation. On the other hand, the behavior of field-aligned acceleration during the bulge development has not been well understood. In this paper we examine the evolution of field-aligned acceleration during the substorm expansion phase invoking spatial development of high latitude Pi pulsations.

Figure shows that the start time of the negative excursion of DC-ULF at GILL (blue arrow) corresponds to that of the low-altitude AKR enhancement (vertical blue line), and the commencement of large amplitude Pi 2 (yellow arrow) corresponds to that of the high-altitude AKR breakout (vertical yellow line). This means that GILL station was almost the footprint of the magnetospheric substorm onset. Wave forms of Pi 2 at higher latitudes indicated the poleward motion of bulge front, and high-altitude AKR (manifestation of high-altitude acceleration) was active during the poleward motion of the bulge front. This indicates an important consequence that the bulge front accompanied the high-altitude acceleration throughout the poleward expansion, resulting in the continuous emanation of active high-altitude AKR.

Keywords: field-aligned acceleration, high-altitude acceleration region, poleward expansion, substorm