Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

PEM30-04

Room:105

Time:May 20 09:45-10:00

Poleward expansion of high-altitude acceleration region at substorm

Akira Morioka^{1*}, Yoshizumi Miyoshi², Yasumasa Kasaba¹, Akira Kadokura³, Hiroaki Misawa¹

¹Tohoku Univ., ²STEL, Nagoya Univ., ³NIPR

It is well established, since the first phenomenological study of auroral substorm by Akasofu [1964], that auroral bulge expands poleward after breakup. Fujii et al. [1994] showed that the poleward edge of the auroral bulge is characterized by dense upward FAC and intense electron precipitation. On the other hand, the behavior of field-aligned acceleration during the bulge development has not been well understood. In this paper we examine the evolution of field-aligned acceleration during the substorm expansion phase invoking spatial development of high latitude Pi pulsations.

Figure shows that the start time of the negative excursion of DC-ULF at GILL (blue arrow) corresponds to that of the low-altitude AKR enhancement (vertical blue line), and the commencement of large amplitude Pi 2 (yellow arrow) corresponds to that of the high-altitude AKR breakout (vertical yellow line). This means that GILL station was almost the foot print of the magnetospheric substorm onset. Wave forms of Pi 2 at higher latitudes indicated the poleward motion of bulge front, and high-altitude AKR (manifestation of high- altitude acceleration) was active during the poleward motion of the bulge front. This indicates an important consequence that the bulge front accompanied the high-altitude acceleration throughout the poleward expansion, resulting in the continuous emanation of active high- altitude AKR.

Keywords: field-aligned acceleration, high-altitude acceleration region, poleward expansion, substorm

26 February 1995		
001 (km) 8 [=_]		
Source altitude @ L=7 (km) 80 90 90 70 80 80 80 80 80 80 80 80 80 80 80 80 80		
dH/dt (nT/sec)	2 RANK (MLAT=72.2°)	
dH/dt (nT/sec)	2 ESKI (MLAT=70.5°)	
dH/dt (nT/sec)	2 FCHU (MLAT=68.3°)	
dH/dt (nT/sec)	2 GILL D CALLERED.O')	
dH/dt (nT/sec)	2 - ISLL (MLAT=63.6°) 2 -	
UT	05:20 05:25 05:30 05:35 05:40 05	:4