## Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.



PPS01-09

会場:201B

時間:5月21日16:30-16:45

## 木星探査計画 JUICE 搭載レーザ高度計の国際共同開発 Development of JUICE/Ganymede Laser Altimeter (GALA)

並木 則行 <sup>1\*</sup>, 小林 正規 <sup>1</sup>, 木村 淳 <sup>2</sup>, Hussmann Hauke<sup>3</sup>, Lingenauber Kay<sup>3</sup>, Oberst Jurgen<sup>3</sup>, GALA 日本チーム <sup>4</sup> Noriyuki Namiki<sup>1\*</sup>, Masanori Kobayashi<sup>1</sup>, Jun Kimura<sup>2</sup>, Hauke Hussmann<sup>3</sup>, Kay Lingenauber<sup>3</sup>, Jurgen Oberst<sup>3</sup>, GALA-Japan Team<sup>4</sup>

<sup>1</sup> 千葉工業大学, <sup>2</sup> 北海道大学大学院理学院, <sup>3</sup> ドイツ航空宇宙センター, <sup>4</sup>JUICE 日本グループ <sup>1</sup>PERC/Chitech, <sup>2</sup>Hokkaido University, <sup>3</sup>DLR Institute of Planetary Research, <sup>4</sup>JUICE-Japan Group

"地球以外に生命を宿す天体は存在するのか"という問いは,人類の知的好奇心の究極に位置する科学的命題である。木星系の大氷衛星であるガニメデやエウロパ,カリストでは, $H_2O$  主体の氷に覆われた表層の下に全球的な液体層,いわゆる"地下海"の存在が示唆されている。液体水の存在はすなわち生命生存の可能性に直結し,地球生物学の他天体への拡がりは「アストロバイオロジー」としてその重要性がこれまでも広く認識されている。しかし,地下海の存在は電磁気的観測や表面地形の解釈から導き出された"可能性"に過ぎない。ESA が主導する木星系探査計画 JUICE ではこの存否を確認することが最重要課題である。

JUICE の搭載候補機器であるレーザ高度計 GALA はレーザ光の往復飛行時間を測定することによって探査機と天体表面までの距離を測定する. 探査機と天体重心の位置情報をもとに,測定距離から地形が求められる. これにより地形の平均場としての全球地形モデルが得られるのと同時に,木星からの潮汐力により生じる固体潮汐の振幅(地形の時間変化)の大きさを測定することで,地下海の存否が推定できる.また,地下海の存在によって引き起こされると予測される回転変動(秤動)も,レーザのフットプリント位置のずれとして条件さえ整えば観測可能であろう. さらに,クロスオーバー解析によって,高度計データは探査機の軌道改良にも役に立ち,その結果,天体の重力場係数,慣性能率比,潮汐ラブ数の精度向上につながり,内部構造が制約できる.

一方,レーザ高度計によって全球的に得られる地形情報は,氷衛星の構造変動履歴をうかがう窓となり,様々な地形の形態とその分布の把握を通して氷地殻構造と内部進化の理解に大きな寄与をもたらす.具体的には,過去に発生した伸張応力が作り出したと考えられる溝構造や,氷地殻が局所的に融解している,あるいは薄くなっている場所に存在すると予想される内部湖などを検出しその形態を解明することが期待できる.こうした情報は氷衛星が示す多様な地質活動(熱・物質輸送様式)の理解につながるだけでなく,氷という揮発性(低融点)物質主体のテクトニクス様式をケイ酸塩鉱物でのそれと対比することによって他の固体惑星の地質活動や地球のプレート・テクトニクスを再考察することにも寄与する.

太陽系固体惑星の主要構成成分は岩石と氷であり、固体惑星のサブカテゴリのひとつである地球型惑星は、雪線の内側で形成したために岩石主体となった。一方で木星系以遠に存在する固体天体は、主構成成分のひとつに氷を持っている。その中でもガニメデは岩石と氷をほぼ等量の割合で保持し水星以上のサイズを持っていることから、地球型惑星と並ぶ固体惑星のもうひとつのサブカテゴリというべき存在である。近年発見が続いている多様な太陽系外惑星の中で、ガニメデのように岩石と氷からなる天体は現在発見されてはいないが存在が十分に予想されることからも、ガニメデの理解は重要である。

GALA は,ドイツ,スイス,日本の国際共同チームにより開発される.基本設計は水星探査機 BepiColombo 搭載のレーザ高度計 BELA をベースにしており,トランシーバユニット(TRU),制御(制御・時間計測・インターフェース)ユニット(ELU),レーザ電子回路ユニット(LEU)の3つのユニットで構成されている.このうち,日本チームはTRUの中の反射光受信部(受信光学系および検出器)を担当する.検出器バックエンドのエレクトロニクスは,測距データ処理系を担当するスイスのベルン大学が担当する.また,レーザ発振・送信部と全体のインテグレーションは,PIである Hauke Hussmann の所属する DLR(ドイツ航空宇宙センター)が担当する.GALA の基本設計,探査機構体とのインターフェース,検証計画は BELA 実績に基づいているが,当然,水星と木星の環境の相違は慎重に取り扱われなければならない.特に,放射線環境と低温環境が設計フェーズでの重点課題である.また,日本チームは反射光受信部を設計・製造して DLR に引き渡すが,測距データ処理系とのインターフェース,即ち Analogue electric 部と RFM の設計要求,を明確化することがもう一つの重点課題である.さらに,ESA の検証計画・受け入れ基準に合致させる準備が第三の重点課題である.日本チームでは手始めに初期熱設計を実施し,TRU 内の熱歪みと温度環境の評価を開始している.さらに探査機構体の外部に露出する望遠鏡部の放射線環境評価を行い,主鏡材料の選定とその熱歪み評価へと進んでいく予定である.

キーワード: 木星, ガニメデ, レーザ高度計 Keywords: Jupiter, Ganymede, Laser altimeter