Evidence for a dynamic event recorded in HED meteorites

Masaaki Miyahara1, Eiji Ohtani1, Akira Yamaguchi2, Shin Ozawa2, Takeshi Sakai3, Hirao Naohisa4

1Graduate School of Science, Tohoku University, 2National Institute of Polar Research, 3Geodynamics Research Center, Ehime University, 4Japan Synchrotron Radiation Research Institute

It is expected that HED meteorites originate from one of the largest asteroids in the solar system, 4 Vesta. Recent Dawn mission operated by NASA also supports the prediction [1][2]. Dawn mission clearly revealed the existence of many craters on 4 Vesta, which are the records of heavy meteorite bombardments. The existence of a high-pressure polymorph in a shocked meteorite is a robust evidence for a dynamic event on its parent-body (e.g., [3][4]). A high-pressure polymorph can be used for estimating the magnitude of a dynamic event (e.g., [5][6]). Some previous studies propose that 4 Vesta might suffer from late heavy bombardment (LHB) as well as the moon [7]. However, a high-pressure polymorph has not been found in HED meteorite so far.

We got one of eucrite samples, Bereba to clarify a dynamic event occurred on 4 Vesta using a high-pressure polymorph. Present Bereba sample has several shock-melt veins, implying that it was heavily shocked. Accordingly, we investigated Bereba using Raman spectroscopy, FEG-SEM, synchrotron(s)-XRD and FIB-TEM techniques to clarify a record of a dynamic event occurred on 4 Vesta.

We focused our interest on silica phase in this study. Raman spectroscopy analyses show that the silica grains in the host-rock of Bereba are cristobalite, tridymite and quartz. Most quartz grains entrained in the shock-melt veins are partly replaced with coesite. BSE images show that silica grains entrained in or adjacent to the shock-melt veins have network-like and/or lamellae-like textures. Raman spectroscopy, s-XRD analyses and TEM images indicate that such silica grains include coesite, stishovite and silica glass along with quartz.

We found the high-pressure polymorphs of silica from HED meteorites for the first time. The existence of stishovite indicates that pressure condition recoded in Bereba should be ~8 GPa at least based on a phase diagram obtained from static high-pressure and high-temperature synthetic experiments [8]. Two giant impact basins on 4 Vesta are depicted by Dawn mission. Crater chronology obtained by Dawn mission reveals that the giant impact basins were formed around 1.0 Ga ago [9]. Its fragments became Vesta family in asteroid belt, and a part of them fell into the Earth as HED meteorites. The existence of high-pressure polymorphs in Bereba may support the giant impact occurred on 4 Vesta.

References: