Examination of Orbiters for Martian Atmospheric Escape Study

Ayako Matsuoka1*, Takumi Abe1, Kanako Seki2, Naoki Terada3, Keigo Ishisaka4, Atsushi Kumamoto5, Junichi Kurihara6, Makoto Taguchi7, Yoshiyumi Futaha8, Satoshi Yagitani9, Takeshi Sakanoi10, Hiromu Nakagawa3, Atsushi Yamazaki1, Shoichiro Yokota1


The atmospheric escape from Mars is considered to be closely associated with the evolution of the Martian atmosphere as well as the existence of the water on Mars. We are now investigating a project to study the global feature and the physical process of the atmospheric escape from Mars. It is expected to consist of at least two orbiters; one of the orbiters is aimed to make in-situ observation of plasma and thin atmosphere at about 100 km altitude, and the other is for the atmospheric imaging and solar-wind monitor. We are planning to make simultaneous observation of the atmospheric escape by the interaction with the solar wind by both of in-situ measurement orbiter and remote-sensing one. Now we are examining the quantitative measurement targets to fully understand the Martian atmospheric escape. At the same time, the sorts and performance of scientific instruments on these orbiters are examined. And furthermore, the preliminary spacecraft design, orbit design and mission plan to achieve the scientific goal are investigated.

Keywords: Mars, atmosphere, solar wind