Numerical models of thermal convection in the mantle of super-Earths

Chihiro Tachinami1, Masaki Ogawa2, Masanori Kameyama3

1Department of Earth Planetary Sciences, Tokyo Institute of Technology, 2Department of Earth Science and Astronomy, University of Tokyo at Komaba, 3Geodynamic Research Center, Ehime University

Numerical models are developed for thermal convection of compressible fluid in a deep mantle with the ratio of its depth to the thermal scale height D much larger than 1 to understand the nature of mantle convection in super-Earths. The viscosity is constant and the Prandtl number is infinite. A linear stability analysis shows that thermal convection is possible in super-Earths only when the thermal expansivity significantly decreases with increasing pressure, as is the case for the real mantle materials; thermal convection is totally inhibited when the thermal expansivity is constant. A systematic numerical simulation carried out to clarify the Nusselt number-Rayleigh number relationship shows that the efficiency of convective heat transport decreases by a factor of up to 2 as D increases. The Nusselt number may not be high enough to extract all the heat generated in the mantle by heat producing elements, and it may be difficult to sustain core-dynamo in super-Earths. Our numerical experiments also show that the Nusselt number significantly depends on the surface temperature. The mantle evolution may depend more strongly on the surface environment in super-Earths than it does in the terrestrial planets of our solar system.

Keywords: super-Earth, mantle convection, adiabatic compression, numerical simulation