Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

PPS23-P02

Room:Convention Hall

Time:May 23 18:15-19:30

Mare volcanism: Reinterpretation based on Kaguya Lunar Radar Sounder data

Shoko Oshigami^{1*}, WATANABE, Shiho², Yasushi Yamaguchi², Atsushi Yamaji³, Takao Kobayashi⁴, Atsushi Kumamoto⁵, Takayuki Ono⁵

¹National Astronomical Observatory of Japan, ²Nagoya University, ³Kyoto University, ⁴Korean Institute of Geoscience and Mineral Resources, ⁵Tohoku University

The volumes of single geological units with different ages and compositions are essential for revealing characteristics of mare volcanisms and for constraining the thermal history of the Moon. Recently, the thicknesses of mare basalt units defined by previous lithofacies maps were indirectly estimated from Clementine multispectral data. That is, the depth-diameter relationship of the craters fringed with ejecta from the underlying basaltic units placed the constraints for the estimation. The results are derived for only limited areas in Oceanus Procellarum and Mare Serenitatis.

At present, the geological structures under the lunar maria are directly investigated using sounder observations. The Lunar Radar Sounder (LRS) onboard Kaguya (SELENE) detected widespread horizontal reflectors under some nearside maria. The LRS detects, using FM-CW radar (4-6 MHz), echoes from subsurface horizons with abrupt changes in dielectric constants at the apparent depths smaller than about 1 km. Oshigami et al. [2012] concluded that the reflectors correspond to the interfaces between basalt units with different FeO contents, suggesting that buried regolith layers were responsible for the radar returns. Therefore the LRS data have great potential to determine a lava effusion volume during a series of magmatism in lunar maria and its time dependence.

Thicknesses of mare basalt units with different ages and compositions are directly estimated from the LRS data in the several regions of lunar maria. Using the technique of Ono et al. [2009], we correlate subsurface reflectors with the surface geologic units, the ages of which have been estimated by several researchers, to evaluate the volumes of the units.

The estimated thicknesses of the geologic units were of the order of 10^{1} - 10^{2} meter, and showed a positive correlation with their ages. The resolution of our estimation was limited by the range resolution of the LRS data. Previous studies indicated that the typical thicknesses of single basalt flows were about 10 m or less in most of the studied sites. These estimations suggest that the geologic units are made up of dozens of lava flows.

Weider et al. [2010] estimated the thicknesses of a number of mare basalt units in Oceanus Procellarum and Mare Serenitatis, ranging from about 80 to 600 m. For the purpose of comparison, we took the unit S15 in Serenitatis defined by Hiesinger et al. [2000]: Weider et al. concluded that the representative thickness was about 500 m although individual data derived from craters located on the unit showed a wide variation, implying large uncertainty of thier estimation. In contrast, the LRS data exhibit that the averaged thickness of the unit S15 is about 150 m.

The volumes of the geologic units estimated in this study were of the order of 10^3 km³, and showed a clear positive correlation with their ages. Again, the resolution of our method was limited by the range resolution of the LRS data. This volume range is consistent with flow volumes derived from numerical simulations of thermal erosion model for lunar sinuous rilles formation. The large sinuous rilles are estimated to have formed by thermal erosion with sustained lava flows of volume in the range 300-1200 km³. The volume range derived from our study also comparable to the average flow volumes of continental flood basalt units forming after the Paleozoic and calculated flow volumes of Archean komatiite flows, both possibly originated from mantle plume activities on the Earth. The estimated volumes of the geologic mare units and their age variation on each maria potentially constrain key factors for the thermal evolution of the Moon; magma buoyancy and crustal thickness, impact basin topography effects on the ascent of magma, and thermal evolution trend.

Keywords: Kaguya, Lunar Radar Sounder, Lunar maria, Subsurface structure, Volcanism