Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

PPS23-P13

Room:Convention Hall

Time:May 23 18:15-19:30

Development of the retro-reflector on the moon for the future lunar laser ranging

Hiroshi Araki^{1*}, Kashima Shingo¹, Hirotomo Noda¹, Hiroo Kunimori², Mashiko Hiutomi³, Toshimichi Otsubo⁴, Utsunomiya Shin⁵, Matsumoto Yoshiaki⁶

¹National Astronomical Observatory of Japan, ²National Institute of Information and Communications Technology, ³Iwate Univercity, ⁴Hitotsubashi Univercity, ⁵Institute of Space and Astronautical Science, ⁶PLANET INC.

Lunar Laser Ranging (LLR) data are important for the investigations of the lunar rotation, tide, and lunar deep interior structure. The range accuracy of LLR has been less than 2 cm for the last 20 years due to the progress of laser transmit/receive system on the ground stations and the atmospheric signal delay model, however, one order or more accurate ranging than 2cm is needed for better understanding of the lunar deep interior. Murphy et al. [1] showed that the main source of range error comes from the fact that the existing retro-reflectors on the lunar surface are array-type ones which consist of arrays of small corner cube prisms (CCP).

To overcome this problem, large single aperture retro-reflectors are necessary with very small offset angles (dihedral angle offset; DAO) between reflecting surfaces, which must be employed for the management of the 'velocity aberration problem' [2,3]. We are developing 'single aperture and hollow' retro-reflector (corner cube mirror; CCM) to be aboard future lunar landing missions. The aperture of CCM is 20cm because the reflection efficiency of that size is found to be higher than that of Apollo 11 array CCP, and 'ultra low expansion glass-ceramic (CCZ-EX; OHARA Inc.)' or 'single crystal Si' are selected for candidate material of CCM in terms of small |CTE|/K (Thermal expansion coefficient over thermal diffusivity). The optical performance of CCM deformed by lunar gravity or solar illumination in the gimbal model will be presented for some cases. We are now trying to fabricate CCM test model made from CCZ-EX using the optical contacting method that is applicable to single crystal Si, too.

References: [1] Murphy T. et al. (2008) PAPS, 120, 20-37. [2] Otsubo T. et al. (2010) Adv. Space Res., 45, 733-740. [3] Otsubo T. et al. (2011) Earth Planet Space, 63, e13-e16.

Keywords: Lunar Laser Ranging, Retroreflector, Single, Hollow, CCZ-EX, Single crystal silicon