Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

会場:106

Geoscience Union

日本海溝沿いの海底地殻変動観測点の強化と観測の開始について Development of GPS/acoustic survey sites along Japan Trench and getting started on their first measurement

木戸 元之¹*, 長田 幸仁¹, 山本 淳平¹, 藤本 博己¹, 太田 雄策², 中山 貴史², 海田 俊輝², 田所 敬一³, 渡部 豪³, 永井 悟³, 奥田 隆³, 安田 健二³

Motoyuki Kido^{1*}, Yukihito Osada¹, Jumpei Yamamoto¹, Hiromi Fujimoto¹, Yusaku Ohta², Takashi NAKAYAMA², Toshiki Kaida², Keiichi Tadokoro³, Tsuyoshi Watanabe³, Satoru Nagai³, Takashi OKUDA³, Kenji Yasuda³

¹ 東北大学 災害科学国際研究所,² 東北大学 地震・噴火予知研究観測センター,³ 名古屋大学大学院 環境学研究科 ¹IRIDeS, Tohoku Univ., ²RCPEV, Tohoku Univ., ³Graduate School of Environmental Studies, Nagoya Univ.

After the occurrence of the devastating M9.0 earthquake, MEXT, Japan promoted the development of seafloor geodetic stations, such as cabled pressure gauge and seafloor transponders for GPS/acoustic survey in order to monitor the crustal movement associated with the earthquake. Our group of Tohoku University and Nagoya University have constructed up 20 GPS/acoustic stations. Each station consists of at least three and at most six transponders, which results in 86 transponders in total. Most of them were installed near trench over 4000m depth, where is found to play an important role on the occurrence of low-frequent giant earthquake.

Transponders were installed on September 2012, using chartered vessel, Shinkai-maru, Shin-Nihon-Kaiji and the first observation including initial positioning has started this and subsequent cruises, using Tubasa, Dokai-Marine on November. We employ shipboard transducer system rather than towing buoy system. For the noise-level, S/N ratio of replied acoustic signal from seafloor over the ship-noise is still in good condition even in thrusting mode for shallow survey sites (<3000m), but S/N ratio getting worse for deeper sites, in where we have to declutch and keep drifting. Improving the software algorithm to handle acoustic waveform will reduce this problem. For the survey style, these cruises were good opportunity to compare the stationary and moving survey styles, because we sufficiently took both types of data. We consider new analytical algorithm to integrate or involve any kind data is needed to efficiently use all the data taken in various opportunity of ship-time. In this talk, as well as technical report addressed above, the result of these initial observation and expectation of precision are presented by introducing an example data.

キーワード: 東北沖地震, 日本海溝, 海底測地 Keywords: Tohoku-oki Eq., Japan Trench, seafloor geodesy