Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

SCG68-11

Room:303

Time:May 23 17:00-17:15

IBM arc petrology, arc evolution and andesite problem

Yoshihiko Tamura^{1*}

¹IFREE, JAMSTEC

Modern magmatism at the intra-oceanic Izu-Bonin-Mariana (IBM) arc is bimodal, with basalt and rhyolite predominating (Tamura & Tatsumi, 2002); and turbidites sampled during Ocean Drilling Program (ODP) Leg 126 in the Izu-Bonin arc, which range in age from 0.1 to 31 Ma, are similarly bimodal (Gill et al., 1994), suggesting that the bimodal volcanism has persisted throughout much of the arc's history. Moreover, such bimodal magmatism is not unique to the Izu-Bonin arc, with the 30-36.5 degrees S sector of the Kermadec arc, another example of an intra-oceanic arc, also exhibiting it (Smith et al., 2003; 2006; Wright et al., 2006).

Closer inspection of the IBM arc remarkably reveals the presence of a significant volume of middle crust with seismic velocities of 6.0-6.8 km/s throughout the entire arc (Calvert et al., 2008; Kodaira et al., 2007a,b; Kodaira et al., 2008; Kodaira et al., 2010; Takahashi et al., 2007; Takahashi et al., 2008; Takahashi et al., 2009). This is remarkable because these velocities are characteristic of a wide range of intermediate-felsic plutonic/metamorphic rocks (Christensen & Mooney, 1995; Behn & Kelemen, 2003, Behn & Kelemen, 2006) and are similar to the mean velocity of andesitic continental crust, such material would not be expected to be present on the basis of the bimodal volcanism.

One possible way to understand this phenomenon is to investigate arc crustal sections exposed on land, but in the IBM arc, remnants of this old crust have never been found at the northern end of the arc, where it is colliding with the Honshu arc (Izu collision zone) (e.g. Tani et al., 2010; Tamura et al., 2010). Tamura et al. (2010) suggest that IBM arc middle crust in the collision zone was partially melted during the collision and then intruded into the overlying upper crust of the Honshu and IBM arcs. This resulted in the complete loss of chronological information, original mineralogy and possibly their original composition, and thus any information related to their original source. 'Ultra-Deep Drilling into Arc Crust' is the best way to sample unprocessed juvenile continental-type crust in order to observe the active processes that produce the nuclei of new continental crust, and to examine the nature of juvenile continental crust being generated at intra-oceanic arcs.

Keywords: IBM arc, andesite, oceanic arc