IODP Site C0012 で採取された海底玄武岩質岩石の岩石磁気
Rock magnetism of submarine basaltic rocks from IODP Site C0012

小田 啓邦 1*, 山本 裕二 2, 山本 由弦 3, 林 炳人 3, Xixi Zhao 4, Huaichun Wu 6, 鳥居雅之 6, 金松 敏也 3, 石塚 治 1
Hirokuni Oda 1*, Yuhji Yamamoto 2, Yuzuru Yamamoto 3, Weiren Lin 3, Xixi Zhao 4, Huaichun Wu 6, Masayuki Torii 6, Toshiya Kanamatsu 3, Osamu Ishizuka 1

1 産業技術総合研究所地質情報研究部門, 2 高知大学, 3 海洋研究開発機構, 4 University of California, Santa Cruz, 5 China University of Geosciences, Beijing, 6 オカヤマ大学

Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Kochi University, Japan Agency for Marine-Earth Science and Technology, University of California, Santa Cruz, China University of Geosciences, Beijing, Okayama University of Science

The IODP Expeditions 322 & 333 penetrated sediments-basement boundary and recovered successive cores at Site C0012 situated on a topographic high named Kashinosaki Knoll. The collected basement samples are composed of alternating beds of pillow basalts and hyaroclastite and were retrieved by rotary core barrel drilling system. Paleomagnetic measurements on basaltic basement rocks from Site C0012 show that the stable magnetization has reversed polarity. Rock magnetic experiments were conducted to understand the magnetic minerals contributing to the primary magnetization. Thermomagnetic curves during heating in air shows a hump around 500 degC which cannot be seen for the curve in vacuum, Ar or He atmosphere. This can be interpreted as a result of oxidation of the magnetic mineral. The results in air, vacuum, Ar and He show maximum curvatures at 326 degC, 332 degC, 328 degC and 303 degC, which might show a Curie temperature of the natural magnetic mineral (titanomaghemite). The peaks at around 402 degC, 392 degC and 424 degC in vacuum, Ar and He might correspond to break down (decomposition) of magnetic minerals (titanomaghemite) by heating. A hump at 493 degC for the heating curve in He could not be resolved enough in the heating curve up to 527 degC. This might be a result of the multiple heatings and heating rates, which suggest the progressive production of titanomagnetite (from titanomaghemite) and subsequent hematite production (reduction in magnetization intensity). Low-temperature magnetic measurements were also conducted and will be interpreted together with Curie temperatures.

キーワード: 岩石磁気, 海底玄武岩, 低温磁性, キュリー温度, Kashinosaki Knoll
Keywords: rock magnetism, submarine basalt, low temperature magnetometry, Curie temperature, Kashinosaki Knoll