In-situ X-ray structural analysis on laser-shock compressed iron

Yoshihiko Kondo1, OZAKI, Norimasa1, URANISHI, Hiroyuki1, RAVASIO, Alessandra2, BENNUZZI-MOUNAIX, Alessandra2, DENOUND, Adrien2, BRAMBRINK, Erilk2, KOENIG, Michel2, RILEY David3, KODAMA, Ryosuke1

1Graduate school of Engineering, Osaka University, 2Laboratory LULI, Ecole Polytechnique, 3Queen’s University Belfast

The knowledge of high pressures (P > 1 Mbar) behavior of materials as iron is crucial for modeling the planetary interiors. Despite important progress obtained in the last decade on macroscopic characterization including equation of state (EOS), microscopic studies are necessary to investigate finely the structure changes.

Here we present recent studies to obtain information on solid-solid phase transformation of iron under laser-driven shock compression using picosecond time-resolved x-ray diffraction technique.

BCC-HCP phase transformation was observed at dynamic high pressure of ~180 GPa.

This work was performed under the joint research project of the LULI, Ecole Polytechnique. This work was partially supported by grants from the Core-to-Core Program of the JSPS, the Global COE Program CEDI of the MEXT, and the CREST of the JST.