Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.


```
Room:201B
```


Time:May 19 15:15-15:30

High-pressure transitions in FeCr2O4 and crystal structures of new post-spinel phases

Takayuki Ishii^{1*}, MORI, Daisuke¹, INAGUMA, Yoshiyuki¹, Kiyoshi Fujino², Hiroshi Kojitani¹, Masaki Akaogi¹

¹Department of Chemistry, Gakushuin niversity, ²Geodynamics Research Center, Ehime University

Introduction

 $FeCr_2O_4$ chromite has the spinel (Sp) structure, and forms the solid solution with MgAl₂O₄ and MgCr₂O₄ which occurs in the Earth's mantle. The chromitite composed of mostly $FeCr_2O_4$ -rich spinel includes high-pressure minerals such as diamond and coesite, which suggest possible indicators of material cycles in the deep mantle (Arai, 2010; Yamamoto et al., 2009). Chen et al. (2003) reported occurrence of the high-pressure polymorphs of $FeCr_2O_4$ -rich composition in Suizhou meteorite and synthesized them with diamond anvil cell. They demostrated that the natural chromite spinel transforms to calcium ferrite (CF)-type at 12.5 GPa and to calcium titanate (CT)-type above 20 GPa. High-pressure transiton study of pure $FeCr_2O_4$ end-member demonstrated that cubic spinel of $FeCr_2O_4$ transforms to tetragonal at high-pressure and room temperature (Kyono et al., 2012). In this sudy, we report experimental results on the phase relations in $FeCr_2O_4$ at high pressure and high temperature and the crystal structure analyses of new post-spinel phases.

Experimantal methods

FeCr₂O₄ spinel was synthesized from a mixture of Fe₂O₃ and Cr₂O₃ with a 1:2 molar ratio by heating at 1200C for 24 h in a controlled oxygen fugacity using a mixture of H₂, CO₂ and Ar with volume ratios of 1:1:2. High-pressure experiments were made by quenching method at 12-28 GPa and 800-1600C with a Kawai-type 6-8 multianvil high-pressure apparatus at Gakushuin University. Phase identification of each recovered sample was made with powder and microfocus X-ray diffractometers, and compositional analysis was made with a SEM-EDS. The recovered FeCr₂O₄ sample was observed by a TEM at Geodynamics Research Center of Ehime University. Angle-dispersive synchrotron X-ray diffraction measurements of some recovered samples were made at ambient conditions using the beam line BL02-B2 at SPring-8 for Rietveld analysis with the RIETAN-FP software (Izumi and Momma, 2007).

Results and discussion

Sp-type FeCr₂O₄ first dissociates into a mixture of Fe₂Cr₂O₅ + Cr₂O₃ at about 15 GPa, and further transforms to a CF-like phase at lower temperature than 1300C and CT-type FeCr₂O₄ at higher temperature at around 20 GPa. Although the CF-like phase had the same space group as the CF-type structure from the result of TEM observation, the X-ray diffraction pattern was somewhat different from that of the CF-type structure. Rietveld refinement confirmed that the FeCr₂O₄ synthesized above about 20 GPa at higher temperature than 1300C has the CT-type structure and that Fe₂Cr₂O₅ phase is isostructural to the high-pressure Mg₂Al₂O₅ phase (Enomoto et al., 2009). The CT-type phase with pure FeCr₂O₄ composition and the Mg₂Al₂O₅-type Fe₂Cr₂O₅ were synthesized for the first time, and the structure analyses of the phases were carried out.

Keywords: post-spinel, high-pressure, Rietveld analysis, chromite, FeCr2O4, TEM observation