Elastic anomaly of anorthite at high temperature and high pressure

Kyoji N. Matsukage

To understand the elastic properties of subducted crustal minerals at P-T conditions of crust and upper mantle, we performed in situ measurement of the elastic wave velocities of anorthite at temperatures up to 1373 K at less than 2.0 GPa and up to 273 K at 2.0-7.0 GPa. A finely ground polycrystalline anorthite was synthesized by using gas pressure apparatus installed at magma factory in Tokyo Tech. The experiments were performed using the SPEED-1500 apparatus installed in beam line BL04B1 at SPring-8.

Pressure was generated by eight 26 mm tungsten carbide anvils with 11 mm truncated edge length. A Co-doped semi-sintered MgO octahedron with an 18 mm edge length was used as a pressure medium. The sample was enclosed in a BN sleeve container, and was placed in the central part (hot spot) of the furnace. Platinum foils (2.5 um in thickness) were inserted at both sides of the sample for determination of sample length by using X-ray radiographic imaging techniques. An Al2O3 rod (5.3 mm in length and 2.0 mm in diameter) was used as buffer rod which transmits ultrasonic wave to the sample. Temperature was measured by a W97Re3-W75Re25 thermocouple. MgO was used as a pressure marker, and it was mixed with BN to prevent grain growth.

In this study, we found temperature induced elastic anomaly. That is increase of elastic velocities and elastic moduli with increasing temperature in the range of 500-900 K at pressure of ~1 GPa. Based on the phase relation, it is considered that this elastic anomaly is occurred in the high-temperature I(-1) phase stability field. Here we suggest a hypothesis that the tilting behavior of corner shared TO4 tetrahedra in three dimensional frameworks causes the elastic anomaly of anorthite at higher temperature more than 500 K. In general, elasticity of solid materials depends on the bond length of atoms; the materials are hardened with decrease of bond length. Noritake et al (unpublished data) found that T-O-T angle increases and bond length of Si-O decreases with increasing temperature for high temperature I(-1) structure, although that is constant for low temperature structure (= P(-1)). This structure changes reasonably explains that the elastic wave velocities of anorthite increase with increasing temperature in the range of 500-900 K. Above 900 K, effect of the thermal expansion may reveal the reduction of elastic constants.

We also found pressure induced elastic anomaly. Elastic wave velocities of anorthite have a negative correlation with density at pressure more than 4.0 GPa. We consider that the pressure induced elastic anomaly is also caused by the tilting of TO4 tetrahedra. Plagioclase feldspars are one of most abundant minerals of subducted crustal rocks on the Earth. Plagioclase may survive in subducted slab at higher pressure as a metastable phase if the temperature of the slab is low. Therefore we consider that plagioclase feldspar might be one of the causes for low velocity anomaly of slab.

Keywords: plagioclase, anorthite, elastic wave velocity, elastic anomaly, subducted slab, crust