Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

SIT39-15

会場:105

時間:5月24日14:45-15:00

高圧下における Fe-S および Fe-Si の音速測定 Sound velocity measurements of liquid Fe-S and Fe-Si at high pressure

西田 圭佑 ^{1*}, 寺崎 英紀 ², 潮田 雅司 ¹, 櫻井 萌 ¹, 桑原 荘馬 ², 肥後 祐司 ³, 舟越 賢一 ³, 大谷 栄治 ⁴ Keisuke Nishida^{1*}, Hidenori Terasaki², Masashi Ushioda¹, Moe Sakurai¹, Souma Kuwabara², Yuji Higo³, Ken-ichi Funakoshi³, Eiji Ohtani⁴

 1 東京工業大学大学院理工学研究科地球惑星科学専攻, 2 大阪大学大学院理学研究科, 3 (財) 高輝度光科学研究センター, 4 東北大学大学院理学研究科地学専攻

P-wave velocity (V_P) is one of the most useful physical properties to understand the struc-ture and dynamics of the liquid core of the Earth, terrestrial planets and satellites. These liquid cores are thought to contain the light element such as S and Si. Thus, it is important to understand effect of S and Si on V_P in liquid Fe. Direct V_P measurement of liquid Fe-alloy at high pressure using ultrasonic was developed by Nishida et al. (2013). V_P of liquid Fe57S43 were reported up to 5.4 GPa. Here we report the results of direct V_P measurements of liquid Fe84S16, Fe50S50, and Fe82Si18 up to 5.4 GPa.

High-pressure experiments were performed using a 1500-ton Kawai-type multi-anvil appa-ratus (SPEED-1500) at the BL04B1 beamline, SPring-8, Japan. The starting materials were pellets consisting of a mixture of Fe and FeS, or Fe and FeSi powders. Single-crystal sapphire or sintered Al2O3 was used as a buffer rod and a backing plate with an hBN capsule. V_P meas-urements were carried out using the pulse-echo-overlap method. P-wave signals with a fre-quency of 37 or 42 MHz were generated and received by a 10° Y-cut LiNbO3 transducer. The series of reflected signals were acquired using a digital oscilloscope. The sample lengths at high pressure and high temperature were determined from the X-ray radiographic image.

The V_P of liquid Fe84S16, Fe50S50, and Fe82Si18 increased almost linearly with increasing pressure. The V_P of liquid Fe82Si18 was faster than that of liquid Fe (Anderson and Ahrens, 1990) and Fe-S. The V_P of liquid Fe-S decreased with increasing S content.

キーワード: 高圧, 核, 音速, 液体, Fe-S, Fe-Si

Keywords: high pressure, core, sound velocity, liquid, Fe-S, Fe-Si

¹Department of Earth and Planetary Sciences, Tokyo Institute of Technology, ²Graduate School of Science, Osaka University, ³Japan Synchrotron Radiation Research Institute, ⁴Department of Earth and Planetary Materials Science, Graduate School of Science, Tohoku University