Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

SIT39-P06

会場:コンベンションホール

下部マントルにおけるカリウムを含む NAL 相の安定性 The effect of potassium on the stability of NAL phase in the lower mantle

加藤 千恵^{1*}, 廣瀬 敬¹, 駒林 鉄也¹, 小澤 春香², 大石 泰生³ Chie Kato^{1*}, Kei Hirose¹, Tetsuya Komabayashi¹, Haruka Ozawa², OHISHI, Yasuo³

1 東京工業大学,2海洋研究開発機構,3高輝度光科学研究センター

¹Tokyo Institute of Technology, ²JAMSTEC, ³JASRI

High-Pressure (*P*) and high-temperature (*T*) experiments were conducted at P = 33 to 144 GPa and T = 1,800 to 2,700 K in order to examine phase relations on the join Na_{1.00}Mg_{2.00}Al_{4.80}Si_{1.15}O₁₂ - K_{1.00}Mg_{2.00}Al_{4.80}Si_{1.15}O₁₂. Stable phases were identified in-situ at high *P*-*T* in a laser-heated diamond-anvil cell (DAC), based on synchrotron X-ray diffraction measurements. The results show that K-rich new aluminous (NAL) phase forms continuous solid solution on the join Na_{1.00}Mg_{2.00}Al_{4.80}Si_{1.15}O₁₂ - K_{1.00}Mg_{2.00}Al_{4.80}Si_{1.15}O₁₂ at 30 GPa. And, NAL is formed as a single phase up to the lowermost mantle conditions in both Na_{0.50}K_{0.50}Mg_{2.00}Al_{4.80}Si_{1.15}O₁₂ and K_{1.00}Mg_{2.00}Al_{4.80}Si_{1.15}O₁₂ compositions. On the other hand, single-phase NAL is found only to 100 GPa at 2,500 K, and NAL coexists with calcium-ferrite type (CF) phase at 120 GPa and 2,300 K in Na_{0.75}K_{0.25}Mg_{2.00}Al_{4.80}Si_{1.15}O₁₂. Considering the NAL phase with Na_{1.00}Mg_{2.00}Al_{4.80}Si_{1.15}O₁₂ composition is stable only up to 45 GPa at 1,850 K, these results clearly indicate that the presence of potassium drastically expands the stability *P-T* field of NAL. In addition to hollandite, the NAL phase should be an important host of potassium in the deep lower mantle, formed in K-rich materials such as subducted continental crust.