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Recent trend of reactive transport modeling of rock weathering
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The weathering of rock proceeds by the dissolution of primary minerals, the precipitation of secondary products, and the trans-
port of materials in the pores of the rock. To quantitatively understand these processes, the analysis using the reactive transport
equation is performed (reactive transport modeling). The following equation is an example of the one-dimensional reaction-
transport equation:

p(dc/dt ) = D (d2c/dx2)-vp(dc/dx)+Ar 0f (c)
wherec is the solute concentration,t is the time,x is the distance,p is the porosity,D is the effective diffusion coefficient,

v is the flow rate in pores,A is the surface area per unit volume of rock,r0 is the rate constant, andf (c) is the function that
expresses the concentration dependence of the dissolution rate. By solving the reaction-transport equation, we can know the
distributions of the solute concentration and dissolution rate in the rock, and their time variations. As the method to determine
the parameters used in the calculation, for example,D can be determined by direct experimental measurement (Yokoyama and
Nakashima, 2005) or by empirical equation (Archie’s law). As for the reaction term, several rate laws, such as linear TST law
(Aagaard and Helgeson, 1982; Lasaga, 1984), Al inhibition model (Oelkers et al., 1994), and parallel rate law (Hellmann and
Tisserand, 2006), have been proposed. In the case of the reaction of quartz,f (c) is equal to 1-c/ceq, whereceq is the equilibrium
concentration (Lasaga, 1998). By comparing the result of calculation with the actual weathering profile, we can discuss various
topics including the mechanism of weathering and the reason of the discrepancy between the dissolution rates obtained in the
field and in the laboratory (White and Brantley, 2003).

As some of the recent studies on reactive transport modeling, Maher et al. (2009) showed that the weathering profiles observed
in soils can be reproduced by using the rate constants (based on the Al inhibition model and parallel rate law) similar to those
estimated from the results of laboratory dissolution experiments, and also suggested that the precipitation of secondary products
plays an important role in controlling the amount of dissolution of primary minerals. Maher (2010) proposed that weathering rate
is strongly dependent on fluid residence time and flow rate. Navarre-Sitchler et al. (2011) showed that the rate of formation of the
weathering rind and the distribution of the primary and secondary minerals in basalt can be explained by incorporating the time
variations ofp, D , andA into the modeling. Moore et al. (2012) indicated that the average flow rate and the reactive surface area
that are smaller than measured values need to be used to reproduce the weathering profile of granite by the modeling.

At present, the concentration dependences of the dissolution rates obtained at temperature higher than ambient temperature
(e.g., 150 degree C) are usually directly used to analyze the reaction at ambient temperature, but its relevance is uncertain. In ad-
dition, although the precipitation rate of secondary product largely affects the result of modeling, information of the precipitation
rate law of a secondary product of interest (e.g., poorly crystalline aluminosilicate) is often insufficient. Furthermore, the pores
in the rock near the ground surface often become unsaturated, but little is known about the extent to which reactive surface area
differs under unsaturated and saturated conditions. To resolve these problems would be important to improve the accuracy of the
reactive transport modeling.

Keywords: Weathering, Reactive transport modeling

1/1


