Japan Geoscience Union Meeting 2013

(May 19-24 2013 at Makuhari, Chiba, Japan)

©2013. Japan Geoscience Union. All Rights Reserved.

SMP46-09

会場:106

時間:5月22日11:30-11:45

高温高圧下での中性子回折実験によるポートランダイト中の水素位置の決定 Hydrogen in portlandite -Neutron diffraction measurements at high pressure and high temperature-

永井 隆哉 ^{1*}, 佐野 亜沙美 ², 飯塚 理子 ³, 鍵 裕之 ³, 瀬戸 雄介 ⁴, 栗林 貴弘 ⁵, 服部 高典 ² Takaya Nagai ^{1*}, Asami Sano ², Riko Iizuka ³, Hiroyuki Kagi ³, Yusuke Seto ⁴, Takahiro Kuribayashi ⁵, Takanori Hattori ²

Ca(OH)₂ is one of the simplest hydrous minerals. Because this type of structure is a component unit in complex hydrous phases such as chondrodite, it is important to understand structural behaviors at high pressure and high temperature. However, only a few previous researches can be found on crystallography of Ca(OH)₂ in the conditions of simultaneously high pressure and high temperature, although there were quite a few studies on EOS, phase relation, melting and so on, which were performed by using X-ray diffraction technique. Last year a brand-new TOF neutron beamline (PLANET) dedicated for high pressure and high temperature measurements started to operate in J-PARC, Japan. Ca(OH)₂ was selected as one of the first targeted materials measured at the PLANET.

Deuterated samples were prepared via hydrothermal treatment with CaO fine powders and excess D_2O water in a Teflon lined stainless steel autoclave at 493 K for 4 days. After the hydrothermal treatment was completed, precipitates were filtered out, washed with D_2O water, and then dried at 383 K under vacuum for 3 hours. The products were confirmed to have the CdI2-type structure by conventional powder X-ray diffraction measurements and were checked to be deuterated by IR absorption spectra. TOF neutron powder diffraction measurements of $Ca(OH)_2$ were carried out from 300 to 773 K at about 3 GPa at the PLANET beamline in J-PARC, Japan. At first, temperature was increased to 773 K at about 3 GPa for annealing and then data acquisition was carried out at each temperature condition to lower temperature. The measurement time at each targeted P-T conditions was about 8 hour after the temperature reached equilibrium. Generation of high pressure and high temperature can be performed by using the 6-ram big press (Atsuhime) installed at PLANET.

Quality of diffraction patterns is surprisingly superior and only diffraction peaks from $Ca(OH)_2$ could be observed owing to radial collimators equipped with Atsuhime, although powder sample of $Ca(OH)_2$ was loaded into a cylindrical graphite furnace in ZrO_2 pressure medium cube. The detailed structure parameters such as lattice parameters and atomic coordinates were refined by the Rietveld method by using a program GSAS.

キーワード: 水素, ポートランダイト, 高温高圧, 中性子回折, 圧姫, プラネット

Keywords: hydrogen, portlandite, high pressure and high temperature, neutron diffraction, Atsuhime, PLANET

¹ 北大院理, 2 日本原子力機構, 3 東大院理, 4 神戸大院理, 5 東北大院理

¹Faculty of Science, Hokkaido Univ., ²JAEA, ³Univ. of Tokyo, ⁴Kobe Univ., ⁵Tohoku Univ.