東北地方太平洋沖地震による首都直下地震ハザードへの影響
 Impact of the $2011 \mathrm{M}=9.0$ Tohoku－oki earthquake on increased seismic hazard for greater Tokyo

遠田 晋次 ${ }^{1 *}$ ，スタインロス ${ }^{2}$
Shinji Toda ${ }^{1 *}$ ，Stein，Ross S．${ }^{2}$
${ }^{1}$ 東北大学災害科学国際研究所，${ }^{2}$ アメリカ合衆国地質調査所
${ }^{1}$ International Research Institute of Disaster Science，Tohoku University，${ }^{2}$ U．S．Geological Survey

The Kanto seismic corridor surrounding Tokyo has hosted 4－5 damaging $M>=7$ earthquakes in the past 400 years，and 55 $\mathrm{M}>=3$ shocks per year were recorded in the decade before the Tohoku－oki earthquake．Both observations would indicate a 1．0－ 1.4% annual $\mathrm{M}>=7$ probability，or $5-7 \%$ for 5 yr．Immediately after the Tohoku－oki earthquake，the seismicity rate in the corridor jumped ten－fold，while normal and strike－slip focal mechanisms all but ceased．The seismicity rate then decayed for less than a year，after which the rate steadied at three times the pre－Tohoku rate．The seismicity rate jump and decay to a new rate，as well as the shutdown of non－thrust mechanisms，can be explained by static Coulomb stress imparted to faults $40-80 \mathrm{~km}$ beneath the Kanto plain by the Tohoku rupture and postseismic megathrust creep．We fit the observations with a rate／state model，which we use to estimate the time－dependent probability of future large earthquakes in the corridor．Although it is possible that the increased Kanto seismicity accompanies accelerated creep that is shedding－rather than accumulating－the stress imparted by Tohoku－oki，the ratio of small to large shocks was not changed by the Tohoku－oki mainshock，and so the simplest assumption is that the probability of large shocks has climbed with the increased rate of small ones．Thus，for a b－value of 0.9 ，we estimate a 17% probability of a $\mathrm{M}>=7.0$ shock over the 5 －year prospective period， 11 March 2013 to 10 March 2018，two－and－a－half times the probability before the Tohuku－oki earthquake．

キーワード：東北地方太平洋沖地震，地震活動，クーロン応力変化，地震ハザード，地震発生確率
Keywords：Tohoku－oki earthquake，seismicity，Coulomb stress change，seismic hazard，earthquake probability

